

2

Preface.. 6
Audience for This Book .. 7
Structure of This Book ... 7
Our Approach to Bioinformatics ... 9
URLs Referenced in This Book... 9
Conventions Used in This Book .. 9
Comments and Questions ... 10
Acknowledgments .. 10
Part I: Introduction ... 11
Chapter 1. Biology in the Computer Age .. 11
1.1 How Is Computing Changing Biology? ... 12
1.2 Isn't Bioinformatics Just About Building Databases? 16
1.3 What Does Informatics Mean to Biologists? 19
1.4 What Challenges Does Biology Offer Computer Scientists? 20
1.5 What Skills Should a Bioinformatician Have?.................................. 20
1.6 Why Should Biologists Use Computers?.. 21
1.7 How Can I Configure a PC to Do Bioinformatics Research? 22
1.8 What Information and Software Are Available? 24
1.9 Can I Learn a Programming Language Without Classes? 24
1.10 How Can I Use Web Information?... 25
1.11 How Do I Understand Sequence Alignment Data? 25
1.12 How Do I Write a Program to Align Two Biological Sequences?
... 26
1.13 How Do I Predict Protein Structure from Sequence? 26
1.14 What Questions Can Bioinformatics Answer? 26
Chapter 2. Computational Approaches to Biological Questions........... 27
2.1 Molecular Biology's Central Dogma... 27
2.2 What Biologists Model .. 31
2.3 Why Biologists Model .. 36
2.4 Computational Methods Covered in This Book 37
2.5 A Computational Biology Experiment... 44
Part II: The Bioinformatics Workstation.. 49
Chapter 3. Setting Up Your Workstation... 49
3.1 Working on a Unix System ... 50
3.2 Setting Up a Linux Workstation .. 52
3.3 How to Get Software Working... 58
3.4 What Software Is Needed? ... 63
Chapter 4. Files and Directories in Unix.. 64
4.1 Filesystem Basics ... 65
4.2 Commands for Working with Directories and Files 70
4.3 Working in a Multiuser Environment .. 78
Chapter 5. Working on a Unix System .. 86
5.1 The Unix Shell.. 86

3

5.2 Issuing Commands on a Unix System ... 88
5.3 Viewing and Editing Files... 92
5.4 Transformations and Filters ... 99
5.5 File Statistics and Comparisons .. 106
5.6 The Language of Regular Expressions ... 109
5.7 Unix Shell Scripts ... 112
5.8 Communicating with Other Computers ... 113
5.9 Playing Nicely with Others in a Shared Environment................. 118
Part III: Tools for Bioinformatics ... 130
Chapter 6. Biological Research on the Web... 130
6.1 Using Search Engines ... 131
6.2 Finding Scientific Articles .. 133
6.3 The Public Biological Databases ... 137
6.4 Searching Biological Databases .. 143
6.5 Depositing Data into the Public Databases 150
6.6 Finding Software... 151
6.7 Judging the Quality of Information ... 152
Chapter 7. Sequence Analysis, Pairwise Alignment, and Database
Searching... 153
7.1 Chemical Composition of Biomolecules ... 155
7.2 Composition of DNA and RNA.. 155
7.3 Watson and Crick Solve the Structure of DNA 156
7.4 Development of DNA Sequencing Methods.................................... 158
7.5 Genefinders and Feature Detection in DNA 162
7.6 DNA Translation .. 163
7.7 Pairwise Sequence Comparison .. 165
7.8 Sequence Queries Against Biological Databases 174
7.9 Multifunctional Tools for Sequence Analysis.................................. 181
Chapter 8. Multiple Sequence Alignments, Trees, and Profiles 182
8.1 The Morphological to the Molecular .. 183
8.2 Multiple Sequence Alignment .. 184
8.3 Phylogenetic Analysis ... 189
8.4 Profiles and Motifs.. 195
Chapter 9. Visualizing Protein Structures and Computing Structural
Properties .. 205
9.1 A Word About Protein Structure Data .. 206
9.2 The Chemistry of Proteins .. 207
9.3 Web-Based Protein Structure Tools .. 218
9.4 Structure Visualization ... 219
9.5 Structure Classification .. 229
9.6 Structural Alignment ... 234
9.7 Structure Analysis .. 237
9.8 Solvent Accessibility and Interactions ... 240
9.9 Computing Physicochemical Properties ... 244

4

9.10 Structure Optimization .. 246
9.11 Protein Resource Databases.. 249
9.12 Putting It All Together ... 250
Chapter 10. Predicting Protein Structure and Function from Sequence
... 252
10.1 Determining the Structures of Proteins .. 253
10.2 Predicting the Structures of Proteins ... 257
10.3 From 3D to 1D .. 259
10.4 Feature Detection in Protein Sequences....................................... 259
10.5 Secondary Structure Prediction ... 260
10.6 Predicting 3D Structure ... 265
10.7 Putting It All Together: A Protein Modeling Project 269
10.8 Summary... 274
Chapter 11. Tools for Genomics and Proteomics 275
11.1 From Sequencing Genes to Sequencing Genomes 277
11.2 Sequence Assembly .. 281
11.3 Accessing Genome Informationon the Web 282
11.4 Annotating and Analyzing Whole Genome Sequences............ 286
11.5 Functional Genomics: New Data Analysis Challenges............. 289
11.6 Proteomics .. 294
11.7 Biochemical Pathway Databases ... 299
11.8 Modeling Kinetics and Physiology.. 302
11.9 Summary... 304
Part IV: Databases and Visualization ... 305
Chapter 12. Automating Data Analysis with Perl 305
12.1 Why Perl? .. 305
12.2 Perl Basics... 306
12.3 Pattern Matching and Regular Expressions 312
12.4 Parsing BLAST Output Using Perl .. 313
12.5 Applying Perl to Bioinformatics .. 318
Chapter 13. Building Biological Databases .. 322
13.1 Types of Databases... 322
13.2 Database Software .. 330
13.3 Introduction to SQL .. 332
13.4 Installing the MySQL DBMS ... 337
13.5 Database Design .. 342
13.6 Developing Web-Based Software That Interacts with
Databases.. 346
Chapter 14. Visualization and Data Mining .. 352
14.1 Preparing Your Data ... 353
14.2 Viewing Graphics.. 354
14.3 Sequence Data Visualization ... 355
14.4 Networks and Pathway Visualization ... 357
14.5 Working with Numerical Data ... 358

5

14.6 Visualization: Summary .. 364
14.7 Data Mining and Biological Information.. 364
Biblio.1 Unix ... 369
Biblio.2 SysAdmin .. 369
Biblio.3 Perl... 369
Biblio.4 General Reference ... 370
Biblio.5 Bioinformatics Reference .. 370
Biblio.6 Molecular Biology/Biology Reference 371
Biblio.7 Protein Structure and Biophysics... 371
Biblio.8 Genomics... 371
Biblio.9 Biotechnology .. 371
Biblio.10 Databases... 371
Biblio.11 Visualization .. 372
Biblio.12 Data Mining.. 372
Colophon.. 373

6

Preface
Computers and the World Wide Web are rapidly and dramatically changing the face
of biological research. These days, the term "paradigm shift" is used to describe
everything from new business trends to new flavors of cola, but biological science is
in the midst of a paradigm shift in the classical sense. Theoretical and computational
biology have existed for decades on the "fringe" of biological science. But within just
a few short years, the flood of new biological data produced by genomics efforts and,
by necessity, the application of computers to the analysis of this genomic data, has
begun to affect every aspect of the biological sciences. Research that used to start in
the laboratory now starts at the computer, as scientists search databases for
information that might suggest new hypotheses.

In the last two decades, both personal computers and supercomputers have become
accessible to scientists across all disciplines. Personal computers have developed
from expensive novelties with little real computing power into machines that are as
powerful as the supercomputers of 10 years ago. Just as they've replaced the
author's typewriter and the accountant's ledger, computers have taken their place in
controlling and collecting data from lab equipment. They have the potential to
completely replace laboratory notebooks and files as a means of storing data. The
power of computer databases allows much easier access to stored data than
nonelectronic forms of recording. Beyond their usefulness for the storage, analysis,
and visualization of data, however, computers are powerful devices for
understanding any system that can be described in a mathematical way, giving rise
to the disciplines of computational biology and, more recently, bioinformatics.

Bioinformatics is the application of information technology to the management of
biological data. It's a rapidly evolving scientific discipline. In the last two decades,
storage of biological data in public databases has become increasingly common, and
these databases have grown exponentially. The biological literature is growing
exponentially as well. It's impossible for even the most zealous researcher to stay on
top of necessary information in the field without the aid of computer-based tools,
and the Web has made it possible for users at any location to interact with programs
and databases at any other site—provided they know how to build the right tools.

Bioinformatics is first and foremost a biological science. It's often less about
developing perfectly elegant algorithms than it is about answering practical
questions. Bioinformaticians (or bioinformaticists, if you prefer) are the tool-builders,
and it's critical that they understand biological problems as well as computational
solutions in order to produce useful tools. Bioinformatics algorithms need to
encompass complex scientific assumptions that can complicate programming and
data modeling in unique ways.

Research in bioinformatics and computational biology can encompass anything from
the abstraction of the properties of a biological system into a mathematical or
physical model, to the implementation of new algorithms for data analysis, to the
development of databases and web tools to access them. To engage in
computational research, a biologist must be comfortable using software tools that
run on a variety of operating systems. This book introduces and explains many of the
most popular tools used in bioinformatics research. We've included lots of additional
information and background material to help you understand how the tools are best

7

used and why they are important. We hope that it will help you through the first
steps of using computers productively in your research.

Audience for This Book
Most biological science students and researchers are starting to use computers as
more than word-processing or data-collection and plotting devices. Many don't have
backgrounds in computer science or computational theory, and to them, the fields of
computational biology and bioinformatics may seem hopelessly large and complex.
This book, motivated by our interactions with our students and colleagues, is by no
means a comprehensive bible on all aspects of bioinformatics. It is, however, a
thoughtful introduction to some of the most important topics in bioinformatics. We
introduce standard computational techniques for finding information in biological
sequence, genome, and molecular structure databases; we talk about how to identify
genes and detect characteristic patterns that identify gene families; and we discuss
the modeling of phylogenetic relationships, molecular structures, and biochemical
properties. We also discuss ways you can use your computer as a tool to organize
data, to think systematically about data-analysis processes, and to begin thinking
about automation of data handling.

Bioinformatics is a fairly advanced topic, so even an introductory book like this one
assumes certain levels of background knowledge. To get the most out of this book
you should have some coursework or experience in molecular biology, chemistry,
and mathematics. An undergraduate course or two in computer programming would
also be helpful.

Structure of This Book
We've arranged the material in this book to allow you to read it from start to finish
or to skip around, digesting later sections before previous ones. It's divided into four
parts:

Part I

Chapter 1 defines bioinformatics as a discipline, delves into a bit of history, and
provides a brief tour of what the book covers and why.

Chapter 2 introduces the core concepts of bioinformatics and molecular biology and
the technologies and research initiatives that have made increasing amounts of
biological data available. It also covers the ever-growing list of basic computer
procedures every biologist should know.

Part II

Chapter 3 introduces Unix, then moves on to the basics of installing Linux on a PC
and getting software up and running.

Chapter 4 covers the ins and outs of moving around a Unix filesystem, including file
hierarchies, naming schemes, commonly used directory commands, and working in a
multiuser environment.

8

Chapter 5 explains many Unix commands users will encounter on a daily basis,
including commands for viewing, editing, and extracting information from files;
regular expressions; shell scripts; and communicating with other computers.

Part III

Chapter 6 is about the art of finding biological information on the Web. The chapter
covers search engines and searching, where to find scientific articles and software,
how to use the online information sources, and the public biological databases.

Chapter 7 begins with a review of molecular evolution and then moves on to cover
the basics of pairwise sequence-analysis techniques such as predicting gene location,
global and local alignment, and local alignment-based searching against databases
using BLAST and FASTA. The chapter concludes with coverage of multifunctional
tools for sequence analysis.

Chapter 8 moves on to study groups of related genes or proteins. It covers strategies
for multiple sequence alignment with tools such as ClustalW and Jalview, then
discusses tools for phylogenetic analysis, and constructing profiles and motifs.

Chapter 9 covers 3D analysis of proteins and the tools used to compute their
structural properties. The chapter begins with a review of protein chemistry and
quickly moves to a discussion of web-based protein structure tools; structure
classification, alignment, and analysis; solvent accessibility and solvent interactions;
and computing physicochemical properties of proteins. The chapter concludes with
structure optimization and a tour through protein resource databases.

Chapter 10 covers the tools that determine the structures of proteins from their
sequences. The chapter discusses feature detection in protein sequences, secondary
structure prediction, predicting 3D structure. It concludes with an example project in
protein modeling.

Chapter 11 puts it all together. Up to now we've covered tools and techniques for
analyzing single sequences or structures, and for comparing multiple sequences of
single-gene length. This chapter discusses some of the datatypes and tools that are
becoming available for studying the integrated function of all the genes in a genome,
including sequencing an entire genome, accessing genome information on the Web,
annotating and analyzing whole genome sequences, and emerging technologies and
proteomics.

Part IV

Chapter 12 shows you how a programming language such as Perl can help you sift
through mountains of data to extract just the information you require. It won't teach
you to program in Perl, but the chapter gives you a brief introduction to the language
and includes examples to start you on your way toward learning to program.

Chapter 13 is an introduction to database concepts. It covers the types of databases
used in biological research, the database software that builds them, database
languages (in particular, the SQL language), and developing web-based software
that interacts with databases.

9

Chapter 14 covers the computational tools and techniques that allow you to make
sense of your results. The first part of the chapter introduces programs that are used
to visualize data arising from bioinformatics research. They range from general-
purpose plotting and statistical packages for numerical data, such as Grace and
gnuplot, to programs such as TEXshade that are dedicated to presenting sequence
and structural information in an interpretable form. The second part of the chapter
presents tools for data mining—the process of finding, interpreting, and evaluating
patterns in large sets of data—in the context of applications in bioinformatics.

Our Approach to Bioinformatics
We confess, we're structural biologists (biophysicists, actually). We have a hard time
thinking about genes without thinking about their protein products. DNA sequences,
to us, aren't just sequences. To a structural biologist, genes (with a few exceptions)
imply 3D structures, molecular shapes and conformational changes, active sites,
chemical reactions, and detailed intermolecular interactions. Our focus in this book is
on using sequence information as structural biologists and biochemists tend to use
it—to understand the chemical basis of biological function. We've probably neglected
some applications of sequence analysis that are dear to the hearts of molecular
biologists and geneticists, so feel free send us your comments.

URLs Referenced in This Book
For more information on the URLs we reference in this book and for additional
material about bioinformatics, see the web page for this book, which is listed in
Section P.6.

Conventions Used in This Book
The following conventions are used in this book:

Italic

Used for commands, filenames, directory names, variables, URLs, and for the
first use of a term

Constant width

Used in code examples and to show the output of commands

Constant width italic

Used in "Usage" phrases to denote variables.

This icon designates a note, which is an important
aside to the nearby text.

10

This icon designates a warning relating to the nearby
text.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/bioskills/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and
the O'Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
From Cynthia: I'd like to thank all of the people who have restrained themselves
from laughing when they heard me say, for the thousandth time during the last year,
"We're almost finished with the book." Thanks to my family and friends, for putting
up with extremely infrequent phone calls and updates during the last few months;
the students in my Fall 2000 Bioinformatics course, for acting as guinea pigs in my
first bioinformatics teaching experiment and helping me identify topics that needed
to be explained more thoroughly; my colleagues at Virginia Tech, for a year's worth
of interesting discussions of what bioinformatics means and what bioinformatics
students need to know; and our friend and colleague Jim Fenton for his contributions
early in the development of the book; and my thesis advisor Shankar Subramaniam.
I'd also like to thank our technical reviewers, Sean Eddy, Peter Leopold, Andrew
Odewahn, Clay Shirky, and Jim Tisdall, for their helpful comments and excellent
advice. And finally, thanks goes to the staff of O'Reilly, and our editor, Lorrie
LeJeune, for infinite patience and moral support during the writing process.

From Per: First, I am deeply grateful to my advisor, Professor Shankar
Subramaniam, who has been a continuous source of inspiration and a mainstay of
our lab's congenial working environment at UCSD. My thanks also go to two of my
mentors, Professor Charles Elkan of the University of California, San Diego, and

http://www.oreilly.com/catalog/bioskills/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

11

Professor Michael R. Brent, now of Washington University, whose wise guidance has
shaped my understanding of computational problems. Sanna Herrgard and Markus
Herrgard read early versions of this book and provided valuable comments and moral
support. The book has also benefited from feedback and helpful conversations with
Ewan Birney, Phil Bourne, Jim Fenton, Mike Farnum, Brian Saunders, and Winny Tan.
Thanks to Joe Johnston of O'Reilly for providing Perl advice and code in Chapter 12.
Our technical reviewers made indispensable suggestions and contributions, and I
owe special thanks to Sean Eddy, Peter Leopold, Andrew Odewahn, Clay Shirky, and
Jim Tisdall for their careful attention to detail. It has been a pleasure to work with
the staff at O'Reilly, and in particular with our editor Lorrie LeJeune, who patiently
and cheerfully guided us through the project. Finally, my part of this book would not
have been possible without the support and encouragement of my family.

Part I: Introduction
Chapter 1

Chapter 2

Chapter 1. Biology in the Computer Age
From the interaction of species and populations, to the function of tissues and cells
within an individual organism, biology is defined as the study of living things. In the
course of that study, biologists collect and interpret data. Now, at the beginning of
the 21st century, we use sophisticated laboratory technology that allows us to collect
data faster than we can interpret it. We have vast volumes of DNA sequence data at
our fingertips. But how do we figure out which parts of that DNA control the various
chemical processes of life? We know the function and structure of some proteins, but
how do we determine the function of new proteins? And how do we predict what a
protein will look like, based on knowledge of its sequence? We understand the
relatively simple code that translates DNA into protein. But how do we find
meaningful new words in the code and add them to the DNA-protein dictionary?

Bioinformatics is the science of using information to understand biology; it's the tool
we can use to help us answer these questions and many others like them.
Unfortunately, with all the hype about mapping the human genome, bioinformatics
has achieved buzzword status; the term is being used in a number of ways,
depending on who is using it. Strictly speaking, bioinformatics is a subset of the
larger field of computational biology , the application of quantitative analytical
techniques in modeling biological systems. In this book, we stray from bioinformatics
into computational biology and back again. The distinctions between the two aren't
important for our purpose here, which is to cover a range of tools and techniques we
believe are critical for molecular biologists who want to understand and apply the
basic computational tools that are available today.

The field of bioinformatics relies heavily on work by experts in statistical methods
and pattern recognition. Researchers come to bioinformatics from many fields,
including mathematics, computer science, and linguistics. Unfortunately, biology is a
science of the specific as well as the general. Bioinformatics is full of pitfalls for those
who look for patterns and make predictions without a complete understanding of

12

where biological data comes from and what it means. By providing algorithms,
databases, user interfaces, and statistical tools, bioinformatics makes it possible to
do exciting things such as compare DNA sequences and generate results that are
potentially significant. "Potentially significant" is perhaps the most important phrase.
These new tools also give you the opportunity to overinterpret data and assign
meaning where none really exists. We can't overstate the importance of
understanding the limitations of these tools. But once you gain that understanding
and become an intelligent consumer of bioinformatics methods, the speed at which
your research progresses can be truly amazing.

1.1 How Is Computing Changing Biology?
An organism's hereditary and functional information is stored as DNA, RNA, and
proteins, all of which are linear chains composed of smaller molecules. These
macromolecules are assembled from a fixed alphabet of well-understood chemicals:
DNA is made up of four deoxyribonucleotides (adenine, thymine, cytosine, and
guanine), RNA is made up from the four ribonucleotides (adenine, uracil, cytosine,
and guanine), and proteins are made from the 20 amino acids. Because these
macromolecules are linear chains of defined components, they can be represented as
sequences of symbols. These sequences can then be compared to find similarities
that suggest the molecules are related by form or function.

Sequence comparison is possibly the most useful computational tool to emerge for
molecular biologists. The World Wide Web has made it possible for a single public
database of genome sequence data to provide services through a uniform interface
to a worldwide community of users. With a commonly used computer program called
fsBLAST, a molecular biologist can compare an uncharacterized DNA sequence to the
entire publicly held collection of DNA sequences. In the next section, we present an
example of how sequence comparison using the BLAST program can help you gain
insight into a real disease.

1.1.1 The Eye of the Fly
Fruit flies (Drosophila melanogaster) are a popular model system for the study of
development of animals from embryo to adult. Fruit flies have a gene called eyeless,
which, if it's "knocked out" (i.e., eliminated from the genome using molecular biology
methods), results in fruit flies with no eyes. It's obvious that the eyeless gene plays
a role in eye development.

Researchers have identified a human gene responsible for a condition called aniridia.
In humans who are missing this gene (or in whom the gene has mutated just enough
for its protein product to stop functioning properly), the eyes develop without irises.

If the gene for aniridia is inserted into an eyeless drosophila "knock out," it causes
the production of normal drosophila eyes. It's an interesting coincidence. Could there
be some similarity in how eyeless and aniridia function, even though flies and
humans are vastly different organisms? Possibly. To gain insight into how eyeless
and aniridia work together, we can compare their sequences. Always bear in mind,
however, that genes have complex effects on one another. Careful experimentation
is required to get a more definitive answer.

13

As little as 15 years ago, looking for similarities between eyeless and aniridia DNA
sequences would have been like looking for a needle in a haystack. Most scientists
compared the respective gene sequences by hand-aligning them one under the other
in a word processor and looking for matches character by character. This was time-
consuming, not to mention hard on the eyes.

In the late 1980s, fast computer programs for comparing sequences changed
molecular biology forever. Pairwise comparison of biological sequences is the
foundation of most widely used bioinformatics techniques. Many tools that are widely
available to the biology community—including everything from multiple alignment,
phylogenetic analysis, motif identification, and homology-modeling software, to web-
based database search services—rely on pairwise sequence-comparison algorithms
as a core element of their function.

These days, a biologist can find dozens of sequence matches in seconds using
sequence-alignment programs such as BLAST and FASTA. These programs are so
commonly used that the first encounter you have with bioinformatics tools and
biological databases will probably be through the National Center for Biotechnology
Information's (NCBI) BLAST web interface. Figure 1-1 shows a standard form for
submitting data to NCBI for a BLAST search.

Figure 1-1. Form for submitting a BLAST search against nucleotide
databases at NCBI

14

1.1.2 Labels in Gene Sequences
Before you rush off to compare the sequences of eyeless and aniridia with BLAST, let
us tell you a little bit about how sequence alignment works.

It's important to remember that biological sequence (DNA or protein) has a chemical
function, but when it's reduced to a single-letter code, it also functions as a unique
label, almost like a bar code. From the information technology point of view,
sequence information is priceless. The sequence label can be applied to a gene, its
product, its function, its role in cellular metabolism, and so on. The user searching
for information related to a particular gene can then use rapid pairwise sequence
comparison to access any information that's been linked to that sequence label.

The most important thing about these sequence labels, though, is that they don't
just uniquely identify a particular gene; they also contain biologically meaningful
patterns that allow users to compare different labels, connect information, and make
inferences. So not only can the labels connect all the information about one gene,
they can help users connect information about genes that are slightly or even
dramatically different in sequence.

If simple labels were all that was needed to make sense of biological data, you could
just slap a unique number (e.g., a GenBank ID) onto every DNA sequence and be
done with it. But biological sequences are related by evolution, so a partial pattern
match between two sequence labels is a significant find. BLAST differs from simple
keyword searching in its ability to detect partial matches along the entire length of a
protein sequence.

1.1.3 Comparing eyeless and aniridia with BLAST
When the two sequences are compared using BLAST, you'll find that eyeless is a
partial match for aniridia. The text that follows is the raw data that's returned from
this BLAST search:
pir||A41644 homeotic protein aniridia - human

Length = 447

Score = 256 bits (647), Expect = 5e-67
Identities = 128/146 (87%), Positives = 134/146 (91%), Gaps = 1/146

(0%)

Query: 24 IERLPSLEDMAHKGHSGVNQLGGVFVGGRPLPDSTRQKIVELAHSGARPCDISRILQVSN
83

I R P+ M + HSGVNQLGGVFV GRPLPDSTRQKIVELAHSGARPCDISRILQVSN
Sbjct: 17 IPRPPARASMQNS-HSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSN

75

Query: 84 GCVSKILGRYYETGSIRPRAIGGSKPRVATAEVVSKISQYKRECPSIFAWEIRDRLLQEN
143

GCVSKILGRYYETGSIRPRAIGGSKPRVAT EVVSKI+QYKRECPSIFAWEIRDRLL E
Sbjct: 76 GCVSKILGRYYETGSIRPRAIGGSKPRVATPEVVSKIAQYKRECPSIFAWEIRDRLLSEG

135

Query: 144 VCTNDNIPSVSSINRVLRNLAAQKEQ 169

15

VCTNDNIPSVSSINRVLRNLA++K+Q
Sbjct: 136 VCTNDNIPSVSSINRVLRNLASEKQQ 161

Score = 142 bits (354), Expect = 1e-32
Identities = 68/80 (85%), Positives = 74/80 (92%)

Query: 398
TEDDQARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQV 457

+++ Q RL LKRKLQRNRTSFT +QI++LEKEFERTHYPDVFARERLA KI
LPEARIQV
Sbjct: 222

SDEAQMRLQLKRKLQRNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLPEARIQV 281

Query: 458 WFSNRRAKWRREEKLRNQRR 477
WFSNRRAKWRREEKLRNQRR

Sbjct: 282 WFSNRRAKWRREEKLRNQRR 301

The output shows local alignments of two high-scoring matching regions in the
protein sequences of the eyeless and aniridia genes. In each set of three lines, the
query sequence (the eyeless sequence that was submitted to the BLAST server) is on
the top line, and the aniridia sequence is on the bottom line. The middle line shows
where the two sequences match. If there is a letter on the middle line, the
sequences match exactly at that position. If there is a plus sign on the middle line,
the two sequences are different at that position, but there is some chemical
similarity between the amino acids (e.g., D and E, aspartic and glutamic acid). If
there is nothing on the middle line, the two sequences don't match at that position.

In this example, you can see that, if you submit the whole eyeless gene sequence
and look (as standard keyword searches do) for an exact match, you won't find
anything. The local sequence regions make up only part of the complete proteins:
the region from 24-169 in eyeless matches the region from 17-161 in the human
aniridia gene, and the region from 398-477 in eyeless matches the region from 222-
301 in aniridia. The rest of the sequence doesn't match! Even the two regions shown,
which match closely, don't match 100%, as they would have to, in order to be found
in a keyword search.

However, this partial match is significant. It tells us that the human aniridia gene,
which we don't know much about, is substantially related in sequence to the fruit
fly's eyeless gene. And we do know a lot about the eyeless gene, from its structure
and function (it's a DNA binding protein that promotes the activity of other genes) to
its effects on the phenotype—the form of the grown fruit fly.

BLAST finds local regions that match even in pairs of sequences that aren't exactly
the same overall. It extends matches beyond a single-character difference in the
sequence, and it keeps trying to extend them in all directions until the overall score
of the sequence match gets too small. As a result, BLAST can detect patterns that
are imperfectly replicated from sequence to sequence, and hence distant
relationships that are inexact but still biologically meaningful.

Depending on the quality of the match between two labels, you can transfer the
information attached to one label to the other. A high-quality sequence match
between two full-length sequences may suggest the hypothesis that their functions

16

are similar, although it's important to remember that the identification is only
tentative until it's been experimentally verified. In the case of the eyeless and
aniridia genes, scientists hope that studying the role of the eyeless gene in
Drosophila eye development will help us understand how aniridia works in human
eye development.

1.2 Isn't Bioinformatics Just About Building Databases?
Much of what we currently think of as part of bioinformatics—sequence comparison,
sequence database searching, sequence analysis—is more complicated than just
designing and populating databases. Bioinformaticians (or computational biologists)
go beyond just capturing, managing, and presenting data, drawing inspiration from a
wide variety of quantitative fields, including statistics, physics, computer science,
and engineering. Figure 1-2 shows how quantitative science intersects with biology
at every level, from analysis of sequence data and protein structure, to metabolic
modeling, to quantitative analysis of populations and ecology.

Figure 1-2. How technology intersects with biology

Bioinformatics is first and foremost a component of the biological sciences. The main
goal of bioinformatics isn't developing the most elegant algorithms or the most
arcane analyses; the goal is finding out how living things work. Like the molecular
biology methods that greatly expanded what biologists were capable of studying,
bioinformatics is a tool and not an end in itself. Bioinformaticians are the tool-
builders, and it's critical that they understand biological problems as well as
computational solutions in order to produce useful tools.

Research in bioinformatics and computational biology can encompass anything from
abstraction of the properties of a biological system into a mathematical or physical
model, to implementation of new algorithms for data analysis, to the development of
databases and web tools to access them.

17

1.2.1 The First Information Age in Biology
Biology as a science of the specific means that biologists need to remember a lot of
details as well as general principles. Biologists have been dealing with problems of
information management since the 17th century.

The roots of the concept of evolution lie in the work of early biologists who
catalogued and compared species of living things. The cataloguing of species was the
preoccupation of biologists for nearly three centuries, beginning with animals and
plants and continuing with microscopic life upon the invention of the compound
microscope. New forms of life and fossils of previously unknown, extinct life forms
are still being discovered even today.

All this cataloguing of plants and animals resulted in what seemed a vast amount of
information at the time. In the mid-16th century, Otto Brunfels published the first
major modern work describing plant species, the Herbarium vitae eicones. As
Europeans traveled more widely around the world, the number of catalogued species
increased, and botanical gardens and herbaria were established. The number of
catalogued plant types was 500 at the time of Theophrastus, a student of Aristotle.
By 1623, Casper Bauhin had observed 6,000 types of plants. Not long after John Ray
introduced the concept of distinct species of animals and plants, and developed
guidelines based on anatomical features for distinguishing conclusively between
species. In the 1730s, Carolus Linnaeus catalogued 18,000 plant species and over
4,000 species of animals, and established the basis for the modern taxonomic
naming system of kingdoms, classes, genera, and species. By the end of the 18th
century, Baron Cuvier had listed over 50,000 species of plants.

It was no coincidence that a concurrent preoccupation of biologists, at this time of
exploration and cataloguing, was classification of species into an orderly taxonomy. A
botany text might encompass several volumes of data, in the form of painstaking
illustrations and descriptions of each species encountered. Biologists were faced with
the problem of how to organize, access, and sensibly add to this information. It was
apparent to the casual observer that some living things were more closely related
than others. A rat and a mouse were clearly more similar to each other than a mouse
and a dog. But how would a biologist know that a rat was like a mouse (but that rat
was not just another name for mouse) without carrying around his several volumes
of drawings? A nomenclature that uniquely identified each living thing and summed
up its presumed relationship with other living things, all in a few words, needed to be
invented.

The solution was relatively simple, but at the time, a great innovation. Species were
to be named with a series of one-word names of increasing specificity. First a very
general division was specified: animal or plant? This was the kingdom to which the
organism belonged. Then, with increasing specificity, came the names for class,
genera, and species. This schematic way of classifying species, as illustrated in
Figure 1-3, is now known as the "Tree of Life."

Figure 1-3. The "Tree of Life" represents the nomenclature system that
classifies species

18

A modern taxonomy of the earth's millions of species is too complicated for even the
most zealous biologist to memorize, and fortunately computers now provide a way to
maintain and access the taxonomy of species. The University of Arizona's Tree of Life
project and NCBI's Taxonomy database are two examples of online taxonomy
projects.

Taxonomy was the first informatics problem in biology. Now, biologists have reached
a similar point of information overload by collecting and cataloguing information
about individual genes. The problem of organizing this information and sharing
knowledge with the scientific community at the gene level isn't being tackled by
developing a nomenclature. It's being attacked directly with computers and
databases from the start.

The evolution of computers over the last half-century has fortuitously paralleled the
developments in the physical sciences that allow us to see biological systems in
increasingly fine detail. Figure 1-4 illustrates the astonishing rate at which biological
knowledge has expanded in the last 20 years.

Figure 1-4. The growth of GenBank and the Protein Data Bank has been
astronomical

19

Simply finding the right needles in the haystack of information that is now available
can be a research problem in itself. Even in the late 1980s, finding a match in a
sequence database was worth a five-page publication. Now this procedure is routine,
but there are many other questions that follow on our ability to search sequence and
structure databases. These questions are the impetus for the field of bioinformatics.

1.3 What Does Informatics Mean to Biologists?
The science of informatics is concerned with the representation, organization,
manipulation, distribution, maintenance, and use of information, particularly in
digital form. There is more than one interpretation of what bioinformatics—the
intersection of informatics and biology—actually means, and it's quite possible to go
out and apply for a job doing bioinformatics and find that the expectations of the job
are entirely different than you thought.

The functional aspect of bioinformatics is the representation, storage, and
distribution of data. Intelligent design of data formats and databases, creation of
tools to query those databases, and development of user interfaces that bring
together different tools to allow the user to ask complex questions about the data
are all aspects of the development of bioinformatics infrastructure.

Developing analytical tools to discover knowledge in data is the second, and more
scientific, aspect of bioinformatics. There are many levels at which we use biological
information, whether we are comparing sequences to develop a hypothesis about the
function of a newly discovered gene, breaking down known 3D protein structures into
bits to find patterns that can help predict how the protein folds, or modeling how
proteins and metabolites in a cell work together to make the cell function. The
ultimate goal of analytical bioinformaticians is to develop predictive methods that
allow scientists to model the function and phenotype of an organism based only on
its genome sequence. This is a grand goal, and one that will be approached only in
small steps, by many scientists working together.

20

1.4 What Challenges Does Biology Offer Computer
Scientists?
The goal of biology, in the era of the genome projects, is to develop a quantitative
understanding of how living things are built from the genome that encodes them.

Cracking the genome code is complex. At the very simplest level, we still have
difficulty identifying unknown genes by computer analysis of genomic sequence. We
still have not managed to predict or model how a chain of amino acids folds into the
specific structure of a functional protein.

Beyond the single-molecule level, the challenges are immense. The sheer amount of
data in GenBank is now growing at an exponential rate, and as datatypes beyond
DNA, RNA, and protein sequence begin to undergo the same kind of explosion,
simply managing, accessing, and presenting this data to users in an intelligible form
is a critical task. Human-computer interaction specialists need to work closely with
academic and clinical researchers in the biological sciences to manage such
staggering amounts of data.

Biological data is very complex and interlinked. A spot on a DNA array, for instance,
is connected not only to immediate information about its intensity, but to layers of
information about genomic location, DNA sequence, structure, function, and more.
Creating information systems that allow biologists to seamlessly follow these links
without getting lost in a sea of information is also a huge opportunity for computer
scientists.

Finally, each gene in the genome isn't an independent entity. Multiple genes interact
to form biochemical pathways, which in turn feed into other pathways. Biochemistry
is influenced by the external environment, by interaction with pathogens, and by
other stimuli. Putting genomic and biochemical data together into quantitative and
predictive models of biochemistry and physiology will be the work of a generation of
computational biologists. Computer scientists, mathematicians, and statisticians will
be a vital part of this effort.

1.5 What Skills Should a Bioinformatician Have?
There's a wide range of topics that are useful if you're interested in pursuing
bioinformatics, and it's not possible to learn them all. However, in our conversations
with scientists working at companies such as Celera Genomics and Eli Lilly, we've
picked up on the following "core requirements" for bioinformaticians:

· You should have a fairly deep background in some aspect of molecular
biology. It can be biochemistry, molecular biology, molecular biophysics, or
even molecular modeling, but without a core of knowledge of molecular
biology you will, as one person told us, "run into brick walls too often."

· You must absolutely understand the central dogma of molecular biology.
Understanding how and why DNA sequence is transcribed into RNA and
translated into protein is vital. (In Chapter 2, we define the central dogma, as
well as review the processes of transcription and translation.)

· You should have substantial experience with at least one or two major
molecular biology software packages, either for sequence analysis or

21

molecular modeling. The experience of learning one of these packages makes
it much easier to learn to use other software quickly.

· You should be comfortable working in a command-line computing
environment. Working in Linux or Unix will provide this experience.

· You should have experience with programming in a computer language such
as C/C++, as well as in a scripting language such as Perl or Python.

There are a variety of other advanced skill sets that can add value to this
background: molecular evolution and systematics; physical chemistry—kinetics,
thermodynamics and statistical mechanics; statistics and probabilistic methods;
database design and implementation; algorithm development; molecular biology
laboratory methods; and others.

1.6 Why Should Biologists Use Computers?
Computers are powerful devices for understanding any system that can be described
in a mathematical way. As our understanding of biological processes has grown and
deepened, it isn't surprising, then, that the disciplines of computational biology and,
more recently, bioinformatics, have evolved from the intersection of classical biology,
mathematics, and computer science.

1.6.1 A New Approach to Data Collection
Biochemistry is often an anecdotal science. If you notice a disease or trait of interest,
the imperative to understand it may drive the progress of research in that direction.
Based on their interest in a particular biochemical process, biochemists have
determined the sequence or structure or analyzed the expression characteristics of a
single gene product at a time. Often this leads to a detailed understanding of one
biochemical pathway or even one protein. How a pathway or protein interacts with
other biological components can easily remain a mystery, due to lack of hands to do
the work, or even because the need to do a particular experiment isn't
communicated to other scientists effectively.

The Internet has changed how scientists share data and made it possible for one
central warehouse of information to serve an entire research community. But more
importantly, experimental technologies are rapidly advancing to the point at which
it's possible to imagine systematically collecting all the data of a particular type in a
central "factory" and then distributing it to researchers to be interpreted.

In the 1990s, the biology community embarked on an unprecedented project:
sequencing all the DNA in the human genome. Even though a first draft of the
human genome sequence has been completed, automated sequencers are still
running around the clock, determining the entire sequences of genomes from various
life forms that are commonly used for biological research. And we're still fine-tuning
the data we've gathered about the human genome over the last 10 years. Immense
strings of data, in which the locations of only a relatively few important genes are
known, have been and still are being generated. Using image-processing techniques,
maps of entire genomes can now be generated much more quickly than they could
with chemical mapping techniques, but even with this technology, complete and
detailed mapping of the genomic data that is now being produced may take years.

22

Recently, the techniques of x-ray crystallography have been refined to a degree that
allows a complete set of crystallographic reflections for a protein to be obtained in
minutes instead of hours or days. Automated analysis software allows structure
determination to be completed in days or weeks, rather than in months. It has
suddenly become possible to conceive of the same type of high-throughput approach
to structure determination that the Human Genome Project takes to sequence
determination. While crystallization of proteins is still the limiting step, it's likely that
the number of protein structures available for study will increase by an order of
magnitude within the next 5 to 10 years.

Parallel computing is a concept that has been around for a long time. Break a
problem down into computationally tractable components, and instead of solving
them one at a time, employ multiple processors to solve each subproblem
simultaneously. The parallel approach is now making its way into experimental
molecular biology with technologies such as the DNA microarray. Microarray
technology allows researchers to conduct thousands of gene expression experiments
simultaneously on a tiny chip. Miniaturized parallel experiments absolutely require
computer support for data collection and analysis. They also require the electronic
publication of data, because information in large datasets that may be tangential to
the purpose of the data collector can be extremely interesting to someone else.
Finding information by searching such databases can save scientists literally years of
work at the lab bench.

The output of all these high-throughput experimental efforts can be shared only
because of the development of the World Wide Web and the advances in
communication and information transfer that the Web has made possible.

The increasing automation of experimental molecular biology and the application of
information technology in the biological sciences have lead to a fundamental change
in the way biological research is done. In addition to anecdotal research—locating
and studying in detail a single gene at a time—we are now cataloguing all the data
that is available, making complete maps to which we can later return and mark the
points of interest. This is happening in the domains of sequence and structure, and
has begun to be the approach to other types of data as well. The trend is toward
storage of raw biological data of all types in public databases, with open access by
the research community. Instead of doing preliminary research in the lab, scientists
are going to the databases first to save time and resources.

1.7 How Can I Configure a PC to Do Bioinformatics
Research?
Up to now you've probably gotten by using word-processing software and other
canned programs that run under user-friendly operating systems such as Windows or
MacOs. In order to make the most of bioinformatics, you need to learn Unix, the
classic operating system of powerful computers known as servers and workstations.
Most scientific software is developed on Unix machines, and serious researchers will
want access to programs that can be run only under Unix. Unix comes in a number
of flavors, the two most popular being BSD and SunOs. Recently, however, a third
choice has entered the marketplace: Linux. Linux is an open source Unix operating
system. In Chapter 3, Chapter 4, and Chapter 5, we discuss how to set up a
workstation for bioinformatics running under Linux. We cover the operating system

23

and how it works: how files are organized, how programs are run, how processes are
managed, and most importantly, what to type at the command prompt to get the
computer to do what you want.

1.7.1 Why Use Unix or Linux?
Setting up your computer with a Linux operating system allows you to take
advantage of cutting-edge scientific-research tools developed for Unix systems. As it
has grown popular in the mass market, Linux has retained the power of Unix
systems for developing, compiling, and running programs, networking, and
managing jobs started by multiple users, while also providing the standard
trimmings of a desktop PC, including word processors, graphics programs, and even
visual programming tools. This book operates on the assumption that you're willing
to learn how to work on a Unix system and that you'll be working on a machine that
has Linux or another flavor of Unix installed. For many of the specific bioinformatics
tools we discuss, Unix is the most practical choice.

On the other hand, Unix isn't necessarily the most practical choice for office
productivity in a predominantly Mac or PC environment. The selection of available
word processing and desktop publishing software and peripheral devices for Linux is
improving as the popularity of the operating system increases. However, it can't
(yet) go head-to-head with the consumer operating systems in these areas. Linux is
no more difficult to maintain than a normal PC operating system, once you know
how, but the skills needed and the problems you'll encounter will be new at first.

As of this writing, my desktop computer has been
reliably up and running Linux for nearly five months,
with the exception of a few days time out for a
hardware failure. No software crashes, no little bombs
or unhappy faces, no missing *.dll files or mysterious
error messages. Installation of Linux took about two
days and some help from tech support the first time I
did it, and about one hour the second time (on a
laptop, no less). Realistically, the main problem I have
encountered being the only Linux user in a Mac/PC
environment is opening email attachments from Mac
users.—CJG

Fortunately, some of the companies selling packaged Linux distributions have
substantially automated the installation procedure, and also offer 90 days of phone
and web technical support for your installation. Companies such as Red Hat and
SuSE and organizations such as Debian provide Linux distributions for PCs, while
Yellow Dog (and others) provide Linux distributions for Macintosh computers.

There are a couple of ways to phase Linux in gradually. Of course, if you have more
than one computer workstation, you can experiment with converting one of your
machines to Linux while leaving your familiar operating system on the rest. The
other choice is to do a dual boot installation. In a dual boot installation, you create
two sections (called partitions) on your hard drive, and install Linux in one of them,

24

with your old operating system in the other. Then, when you turn on your computer,
you have a choice of whether to start up Linux or your other operating system. You
can leave all your old files and programs where they are and start with new work in
your Linux partition. Newer versions of Linux, such as Yellow Dog Linux for the
PowerPC, allow users to emulate a MacOS environment within Linux and access
software and files for both platforms simultaneously.

1.8 What Information and Software Are Available?
In Chapter 6, we cover information literacy. Only a few years ago, biologists had to
know how to do literature searches using printed indexes that led them to references
in the appropriate technical journals. Modern biologists search web-based databases
for the same information and have access to dozens of other information types as
well. Knowing how to navigate these resources is a vital skill for every biologist,
computational or not.

We then introduce the basic tools you'll need to locate databases, computer
programs, and other resources on the Web, to transfer these resources to your
computer, and to make them work once you get them there. In Chapter 7 through
Chapter 11 we turn to particular types of scientific questions and the tools you will
need to answer them. In some cases, there are computer programs that are
becoming the standard for solving a particular type of problem (e.g., BLAST and
FASTA for amino acid and nucleic acid sequence alignment). In other areas, where
the method for solving a problem is still an open research question, there may be a
number of competing tools, or there may be no tool that completely solves the
problem.

1.8.1 Why Do I Need to Install a Program from the Web?
Handling large volumes of complex data requires a systematic and automated
approach. If you're searching a database for matches to one query, a web form will
do the trick. But what if you want to search for matches to 10,000 queries, and then
sort through the information you get back to find relationships in the results? You
certainly don't want to type 10,000 queries into a web form, and you probably don't
want your results to come back formatted to look nice on a web page. Shared public
web servers are often slow, and using them to process large batches of data is
impractical. Chapter 12 contains examples of how to use Perl as a driver to make
your favorite program process large volumes of data using your own computer.

1.9 Can I Learn a Programming Language Without
Classes?
Anyone who has experience with designing and carrying out an experiment to
answer a question has the basic skills needed to program a computer. A laboratory
experiment begins with a question, which evolves into a testable hypothesis, that is,
a statement that can be tested for truth based on the results of an experiment or
experiments. The processes developed to test the hypotheses are analogous to
computer programs. The essence of an experiment is: if you take system X, and do
something to it, what happens? The experiment that is done must be designed to
have results that can be clearly interpreted. Computer programs must also be
carefully designed so that the values that are passed from one part of a program to

25

the next can be clearly interpreted. The human programmer must set up
unambiguous instructions to the computer and must think through, in advance, what
different types of results mean and what the computer should do with them. A large
part of practical computer programming is the ability to think critically, to design a
process to answer a question, and to understand what is required to answer the
question unambiguously.

Even if you have these skills, learning a computer language isn't a trivial
undertaking, but it has been made a lot easier in recent years by the development of
the Perl language. Perl, referred to by its creator as "the duct tape of the Internet,
and of everything else," began its evolution as a scripting language optimized for
data processing. It continues to evolve into a full-featured programming language,
and it's practical to use Perl to develop prototypes for virtually any kind of computer
program. Perl is a very flexible language; you can learn just enough to write a simple
script to solve a one-off problem, and after you've done that once or twice, you have
a core of knowledge to build on. The key to learning Perl is to use it and to use it
right away. Just as no amount of reading the textbook can make you speak Spanish
fluently, no amount of reading O'Reilly's Learning Perl is going to be as helpful as
getting out there and trying to "speak" it. In Chapter 12, we provide example Perl
code for parsing common biological datatypes, driving and processing output from
programs written in other languages, and even a couple of Perl implementations that
solve common computational biology problems. We hope these examples inspire you
to try a little programming of your own.

1.10 How Can I Use Web Information?
Chapter 6 also introduces the public databases where biological data is archived to
be shared by researchers worldwide.

While you can quickly find a single protein structure file or DNA sequence file by
filling in a web form and searching a public database, it's likely that eventually you
will want to work with more than one piece of data. You may even be collecting and
archiving your own data; you may want to make a new type of data available to a
broader research community. To do these things efficiently, you need to store data
on your own computer. If you want to process your stored data using a computer
program, you need to structure your data. Understanding the difference between
structured and unstructured data and designing a data format that suits your data
storage and access needs is the key to making your data useful and accessible.

There are many ways to organize data. While most biological data is still stored in
flat file databases, this type of database becomes inefficient when the quantity of
data being stored becomes extremely large. Chapter 13 covers the basic database
concepts you need to talk to database experts and to build your own databases. We
discuss the differences between flat file and relational databases, introduce the best
public-domain tools for managing databases, and show you how to use them to store
and access your data.

1.11 How Do I Understand Sequence Alignment Data?
It's hard to make sense of your data, or make a point, without visualization tools.
The extraction of cross sections or subsets of complex multivariate data sets is often

26

required to make sense of biological data. Storing your data in structured databases,
which are discussed in Chapter 13, creates the infrastructure for analysis of complex
data.

Once you've stored data in an accessible, flexible format, the next step is to extract
what is important to you and visualize it. Whether you need to make a histogram of
your data or display a molecular structure in three dimensions and watch it move in
real time, there are visualization tools that can do what you want. Chapter 14 covers
data-analysis and data-visualization tools, from generic plotting packages to domain-
specific programs for marking up biological sequence alignments, displaying
molecular structures, creating phylogenetic trees, and a host of other purposes.

1.12 How Do I Write a Program to Align Two Biological
Sequences?
An important component of any kind of computational science is knowing when you
need to write a program yourself and when you can use code someone else has
written. The efficient programmer is a lazy programmer; she never wastes effort
writing a program if someone else has already made a perfectly good program
available. If you are looking to do something fairly routine, such as aligning two
protein sequences, you can be sure that someone else has already written the
program you need and that by searching you can probably even find some source
code to look at. Similarly, many mathematical and statistical problems can be solved
using standard code that is freely available in code libraries. Perl programmers make
code that simplifies standard operations available in modules; there are many freely
available modules that manage web-related processes, and there are projects
underway to create standard modules for handling biological-sequence data.

1.13 How Do I Predict Protein Structure from Sequence?
There are some questions we can't answer for you, and that's one of them; in fact,
it's one of the biggest open research questions in computational biology. What we
can and do give you are the tools to find information about such problems and others
who are working on them, and even, with the proper inspiration, to develop
approaches to answering them yourself. Bioinformatics, like any other science,
doesn't always provide quick and easy answers to problems.

1.14 What Questions Can Bioinformatics Answer?
The questions that drive (and fund) bioinformatics research are the same questions
humans have been working away at in applied biology for the last few hundred
years. How can we cure disease? How can we prevent infection? How can we
produce enough food to feed all of humanity? Companies in the business of
developing drugs, agricultural chemicals, hybrid plants, plastics and other petroleum
derivatives, and biological approaches to environmental remediation, among others,
are developing bioinformatics divisions and looking to bioinformatics to provide new
targets and to help replace scarce natural resources.

The existence of genome projects implies our intention to use the data they
generate. The implicit goals of modern molecular biology are, simply stated, to read

27

the entire genomes of living things, to identify every gene, to match each gene with
the protein it encodes, and to determine the structure and function of each protein.
Detailed knowledge of gene sequence, protein structure and function, and gene
expression patterns is expected to give us the ability to understand how life works at
the highest possible resolution. Implicit in this is the ability to manipulate living
things with precision and accuracy.

Chapter 2. Computational Approaches to
Biological Questions
There is a standard range of techniques that are taught in
bioinformatics courses. Currently, most of the important techniques
are based on one key principle: that sequence and structural homology
(or similarity) between molecules can be used to infer structural and
functional similarity. In this chapter, we'll give you an overview of the
standard computer techniques available to biologists; later in the
book, we'll discuss how specific software packages implement these
techniques and how you should use them.

2.1 Molecular Biology's Central Dogma
Before we go any further, it's essential that you understand some basics of cell and
molecular biology. If you're already familiar with DNA and protein structure, genes,
and the processes of transcription and translation, feel free to skip ahead to the next
section.

The central dogma of molecular biology states that:

DNA acts as a template to replicate itself, DNA is also transcribed into
RNA, and RNA is translated into protein.

As you can see, the central dogma sums up the function of the genome in terms of
information. Genetic information is conserved and passed on to progeny through the
process of replication. Genetic information is also used by the individual organism
through the processes of transcription and translation. There are many layers of
function, at the structural, biochemical, and cellular levels, built on top of genomic
information. But in the end, all of life's functions come back to the information
content of the genome.

Put another way, genomic DNA contains the master plan for a living thing. Without
DNA, organisms wouldn't be able to replicate themselves. The raw "one-dimensional"
sequence of DNA, however, doesn't actually do anything biochemically; it's only
information, a blueprint if you will, that's read by the cell's protein synthesizing
machinery. DNA sequences are the punch cards; cells are the computers.

DNA is a linear polymer made up of individual chemical units called nucleotides or
bases. The four nucleotides that make up the DNA sequences of living things (on
Earth, at least) are adenine, guanine, cytosine, and thymine—designated A, G, C,

28

and T, respectively. The order of the nucleotides in the linear DNA sequence contains
the instructions that build an organism. Those instructions are read in processes
called replication, transcription, and translation.

2.1.1 Replication of DNA
The unusual structure of DNA molecules gives DNA special properties. These
properties allow the information stored in DNA to be preserved and passed from one
cell to another, and thus from parents to their offspring. Two molecules of DNA form
a double-helical structure, twining around each other in a regular pattern along their
full length—which can be millions of nucleotides. The halves of the double helix are
held together by bonds between the nucleotides on each strand. The nucleotides also
bond in particular ways: A can pair only with T, and G can pair only with C. Each of
these pairs is referred to as a base pair, and the length of a DNA sequence is often
described in base pairs (or bp), kilobases (1,000 bp), megabases (1 million bp), etc.

Each strand in the DNA double helix is a chemical "mirror image" of the other. If
there is an A on one strand, there will always be a T opposite it on the other. If there
is a C on one strand, its partner will always be a G.

When a cell divides to form two new daughter cells, DNA is replicated by untwisting
the two strands of the double helix and using each strand as a template to build its
chemical mirror image, or complementary strand. This process is illustrated in Figure
2-1.

Figure 2-1. Schematic replication of one strand of the DNA helix

2.1.2 Genomes and Genes
The entire DNA sequence that codes for a living thing is called its genome. The
genome doesn't function as one long sequence, however. It's divided into individual
genes. A gene is a small, defined section of the entire genomic sequence, and each
gene has a specific, unique purpose.

There are three classes of genes. Protein-coding genes are templates for generating
molecules called proteins. Each protein encoded by the genome is a chemical

29

machine with a distinct purpose in the organism. RNA-specifying genes are also
templates for chemical machines, but the building blocks of RNA machines are
different from those that make up proteins. Finally, untranscribed genes are regions
of genomic DNA that have some functional purpose but don't achieve that purpose
by being transcribed or translated to create another molecule.

2.1.3 Transcription of DNA
DNA can act not only as a template for making copies of itself but also as a blueprint
for a molecule called ribonucleic acid (RNA). The process by which DNA is transcribed
into RNA is called transcription and is illustrated inFigure 2-2. RNA is structurally
similar to DNA. It's a polymeric molecule made up of individual chemical units, but
the chemical backbone that holds these units together is slightly different from the
backbone of DNA, allowing RNA to exist in a single-stranded form as well as in a
double helix. These single-stranded molecules still form base pairs between different
parts of the chain, causing RNA to fold into 3D structures. The individual chemical
units of RNA are designated A, C, G, and U (uracil, which takes the place of
thymine).

Figure 2-2. Schematic of DNA being transcribed into RNA

The genome provides a template for the synthesis of a variety of RNA molecules: the
three main types of RNA are messenger RNA, transfer RNA, and ribosomal RNA.
Messenger RNA (mRNA) molecules are RNA transcripts of genes. They carry
information from the genome to the ribosome, the cell's protein synthesis apparatus.
Transfer RNA (tRNA) molecules are untranslated RNA molecules that transport amino
acids, the building blocks of proteins, to the ribosome. Finally, ribosomal RNA (rRNA)
molecules are the untranslated RNA components of ribosomes, which are complexes
of protein and RNA. rRNAs are involved in anchoring the mRNA molecule and
catalyzing some steps in the translation process. Some viruses also use RNA instead
of DNA as their genetic material.

2.1.4 Translation of mRNA
Translation of mRNA into protein is the final major step in putting the information in
the genome to work in the cell.

30

Like DNA, proteins are linear polymers built from an alphabet of chemically variable
units. The protein alphabet is a set of small molecules called amino acids.

Unlike DNA, the chemical sequence of a protein has physicochemical "content" as
well as information content. Each of the 20 amino acids commonly found in proteins
has a different chemical nature, determined by its side chain—a chemical group that
varies from amino acid to amino acid. The chemical sequence of the protein is called
its primary structure, but the way the sequence folds up to form a compact molecule
is as important to the function of the protein as is its primary structure. The
secondary and tertiary structure elements that make up the protein's final fold can
bring distant parts of the chemical sequence of the protein together to form
functional sites.

As shown in Figure 2-3, the genetic code is the code that translates DNA into protein.
It takes three bases of DNA (called a codon) to code for each amino acid in a protein
sequence. Simple combinatorics tells us that there are 64 ways to choose 3
nucleotides from a set of 4, so there are 64 possible codons and only 20 amino acids.
Some codons are redundant; others have the special function of telling the cell's
translation machinery to stop translating an mRNA molecule. Figure 2-4 shows how
RNA is translated into protein.

Figure 2-3. The genetic code

Figure 2-4. Synthesis of protein with standard base pairing

31

2.1.5 Molecular Evolution
Errors in replication and transcription of DNA are relatively common. If these errors
occur in the reproductive cells of an organism, they can be passed to its progeny.
Alterations in the sequence of DNA are known as mutations. Mutations can have
harmful results—results that make the progeny less likely to survive to adulthood.
They can also have beneficial results, or they can be neutral. If a mutation doesn't
kill the organism before it reproduces, the mutation can become fixed in the
population over many generations. The slow accumulation of such changes is
responsible for the process known as evolution. Access to DNA sequences gives us
access to a more precise understanding of evolution. Our understanding of the
molecular mechanism of evolution as a gradual process of accumulating DNA
sequence mutations is the justification for developing hypotheses based on DNA and
protein sequence comparison.

2.2 What Biologists Model
Now that we've completed our ultra-short course in cell biology, let's
look at how to apply it to problems in molecular biology. One of the
most important exercises in biology and bioinformatics is modeling. A
model is an abstract way of describing a complicated system. Turning
something as complex (and confusing) as a chromosome, or the cycle
of cell division, into a simplified representation that captures all the
features you are trying to study can be extremely difficult. A model
helps us see the larger picture. One feature of a good model is that it
makes systems that are otherwise difficult to study easier to analyze
using quantitative approaches. Bioinformatics tools rely on our ability
to extract relevant parameters from a biological system (be it a single
molecule or something as complicated as a cell), describe them
quantitatively, and then develop computational methods that use
those parameters to compute the properties of a system or predict its
behavior.

32

To help you understand what a model is and what kind of analysis a
good model makes possible, let's look at three examples on which
bioinformatics methods are based.
2.2.1 Accessing 3D Molecules Through a 1D Representation
In reality, DNA and proteins are complicated 3D molecules, composed
of thousands or even millions of atoms bonded together. However,
DNA and proteins are both polymers, chains of repeating chemical
units (monomers) with a common backbone holding them together.
Each chemical unit in the polymer has two subsets of atoms: a subset
of atoms that doesn't vary from monomer to monomer and that makes
up the backbone of the polymer, and a subset of atoms that does vary
from monomer to monomer.
In DNA, four nucleic acid monomers (A, T, C, and G) are commonly
used to build the polymer chain. In proteins, 20 amino acid monomers
are used. In a DNA chain, the four nucleic acids can occur in any
order, and the order they occur in determines what the DNA does. In a
protein, amino acids can occur in any order, and their order
determines the protein's fold and function.
Not too long after the chemical natures of DNA and proteins were
understood, researchers recognized that it was convenient to
represent them by strings of single letters. Instead of representing
each nucleic acid in a DNA sequence as a detailed chemical entity,
they could be represented simply as A, T, C, and G. Thus, a short
piece of DNA that contains thousands of individual atoms can be
represented by a sequence of few hundred letters. Figure 2-5
illustrates the simplified way to represent a polymer chain.

Figure 2-5. Simplifying the representation of a polymer chain

33

Not only does this abstraction save storage space and provide a
convenient form for sharing sequence information, it represents the
nature of a molecule uniquely and correctly and ignores levels of detail
(such as atomic structure of DNA and many proteins) that are
experimentally inaccessible. Many computational biology methods
exploit this 1D abstraction of 3D biological macromolecules.
The abstraction of nucleic acid and protein sequences into 1D strings
has been one of the most fruitful modeling strategies in computational
molecular biology, and analysis of character strings is a long-standing
area of research in computer science.[1] One of the elementary
questions you can ask about strings is, "Do they match?" There are
well-established algorithms in computer science for finding exact and
inexact matches in pairs of strings. These algorithms are applied to
find pairwise matches between biological sequences and to search
sequence databases using a sequence query.

[1] A string is simply an unbroken sequence of characters. A character is a single letter chosen
from a set of defined letters, whether that be binary code (strings of zeros and ones) or the
more complicated alphabetic and numerical alphabet that can be typed on a computer
keyboard.

In addition to matching individual sequences, string-based methods
from computer science have been successfully applied to a number of
other problems in molecular biology. For example, algorithms for
reconstructing a string from a set of shorter substrings can assemble

34

DNA sequences from overlapping sequence fragments. Techniques for
recognizing repeated patterns in single sequences or conserved
patterns across multiple sequences allow researchers to identify
signatures associated with biological structures or functions. Finally,
multiple sequence-alignment techniques allow the simultaneous
comparison of several molecules that can infer evolutionary
relationships between sequences.
This simplifying abstraction of DNA and protein sequence seems to
ignore a lot of biology. The cellular context in which biomolecules exist
is completely ignored, as are their interactions with other molecules
and their molecular structure. And yet it has been shown over and
over that matches between biological sequences—for example, in the
detection of similarity in eye-development genes in humans and flies,
as we discussed in Chapter 1—can be biologically meaningful.
2.2.2 Abstractions for Modeling Protein Structure
There is more to biology than sequences. Proteins and nucleic acids
also have complex 3D structures that provide clues to their functions
in the living organism. Molecular structures are usually represented as
collections of atoms, each of which has a defined position in 3D space.
Structure analysis can be performed on static structures, or
movements and interactions in the molecules can be studied with
molecular simulation methods.
Standard molecular simulation approaches model proteins as a
collection of point masses (atoms) connected by bonds. The bond
between two atoms has a standard length, derived from experimental
chemistry, and an associated applied force that constrains the bond at
that length. The angle between three adjacent atoms has a standard
value and an applied force that constrains the bond angle around that
value. The same is true of the dihedral angle described by four
adjacent atoms. In a molecular dynamics simulation, energy is added
to the molecular system by simulated "heating." Following standard
Newtonian laws, the atoms in the molecule move. The energy added to
the system provides an opposing force that moves atoms in the
molecule out of their standard conformations. The actions and
reactions of hundreds of atoms in a molecular system can be
simulated using this abstraction.
However, the computational demands of molecular simulations are
huge, and there is some uncertainty both in the force field -- the
collection of standard forces that model the molecule—and in the

35

modeling of nonbonded interactions -- interactions between
nonadjacent atoms. So it has not proven possible to predict protein
structure using the all-atom modeling approach.
Some researchers have recently had moderate success in predicting
protein topology for simple proteins using an intermediate level of
abstraction—more than linear sequence, but less than an all-atom
model. In this case, the protein is treated as a series of beads
(representing the individual amino acids) on a string (representing the
backbone). Beads may have different characters to represent the
differences in the amino acid sidechains. They may be positively or
negatively charged, polar or nonpolar, small or large. There are rules
governing which beads will attract each other. Like charges repel;
unlike charges attract. Polar groups cluster with other polar groups,
and nonpolar with nonpolar. There are also rules governing the string;
mainly that it can't pass through itself in the course of the simulation.
The folding simulation itself is conducted through sequential or
simultaneous perturbation of the position of each bead.
2.2.3 Mathematical Modeling of Biochemical Systems
Using theoretical models in biology goes far beyond the single
molecule level. For years, ecologists have been using mathematical
models to help them understand the dynamics of changes in
interdependent populations. What effect does a decrease in the
population of a predator species have on the population of its prey?
What effect do changes in the environment have on population? The
answers to those questions are theoretically predictable, given an
appropriate mathematical model and a knowledge of the sizes of
populations and their standard rates of change due to various factors.
In molecular biology, a similar approach, called metabolic control
analysis, is applied to biochemical reactions that involve many
molecules and chemical species. While cells contain hundreds or
thousands of interacting proteins, small molecules, and ions, it's
possible to create a model that describes and predicts a small corner
of that complicated metabolism. For instance, if you are interested in
the biological processes that maintain different concentrations of
hydrogen ions on either side of the mitochondrial inner membrane in
eukaryotic cells, it's probably not necessary for your model to include
the distant group of metabolic pathways that are closely involved in
biosynthesis of the heme structure.

36

Metabolic models describe a biochemical process in terms of the
concentrations of chemical species involved in a pathway, and the
reactions and fluxes that affect those concentrations. Reactions and
fluxes can be described by differential equations; they are essentially
rates of change in concentration. What makes metabolic simulation
interesting is the possibility of modeling dozens of reactions
simultaneously to see what effect they have on the concentration of
particular chemical species. Using a properly constructed metabolic
model, you can test different assumptions about cellular conditions
and fine-tune the model to simulate experimental observations. That,
in turn, can suggest testable hypotheses to drive further research.

2.3 Why Biologists Model
We've mentioned more than once that theoretical modeling provides
testable hypotheses, not definitive answers. It sometimes isn't so easy
to maintain this distinction, especially with pairwise sequence
comparison, which seems to provide such ready answers. Even
identification of genes based on sequence similarity ultimately needs
to be validated experimentally. It's not sufficient to say that an
unknown DNA sequence is similar to the sequence of a gene that has
been subject to detailed characterization, so therefore it must have an
identical function. The two sequences could be distantly related but
have evolved to have different functions. However, it's altogether
reasonable to use sequence similarity as the starting point for
verification; if sequence homology suggests that an unknown gene is
similar to citrate synthases, your first experimental approach might be
to test the unknown gene product for citrate synthase activity.
One of the main benefits of using computational tools in biology is that
it becomes easier to preselect targets for experimentation in molecular
biology and biochemistry. Using everything from sequence profiling
methods to geometric and physicochemical analysis of protein
structures, researchers can focus narrowly on the parts of a sequence
or structure that appear to have some functional significance. Only a
decade ago, this focusing might have been done using "shotgun"
approaches to site-directed mutagenesis, in which random single-
residue mutants of a protein were created and characterized in order
to select possible targets. Functional genomics and metabolic
reconstruction efforts are beginning to provide biochemists with a
framework for narrowing their research focuses as well.
For the researcher focused on developing bioinformatics methods, the
discovery of general rules and properties in data is by far the most

37

interesting category of problems that can be addressed using a
computer. It's also a diverse category and one we can't give you many
rules for. Researchers have found interesting and useful properties in
everything from sequence patterns to the separation of atoms in
molecular structures and have applied these findings to produce such
tools as genefinders, secondary structure prediction tools, profile
methods, and homology modeling tools.
Bioinformatics researchers are still tackling problems that currently
have reasonably successful solutions, from basecalling to sequence
alignment to genome comparison to protein structure modeling,
attempting to improve the accuracy and range of these procedures.
Information-technology experts are currently developing database
structures and query tools for everything from gene-expression data to
intermolecular interactions. Like any other field of research, there are
many niches of inquiry available, and the only way to find them is to
delve into the current literature.

2.4 Computational Methods Covered in This Book
Molecular biology research is a fast-growing area. The amount and
type of data that can be gathered is exploding, and the trend of
storing this data in public databases is spilling over from genome
sequence to all sorts of other biological datatypes. The information
landscape for biologists is changing so rapidly that anything we say in
this book is likely to be somewhat behind the times before it even hits
the shelves.
Yet, since the inception of the Human Genome Project, a core set of
computational approaches has emerged for dealing with the types of
data that are currently shared in public databases—DNA, protein
sequence, and protein structure. Although databases containing results
from new high-throughput molecular biology methods have not yet
grown to the extent the sequence databases have, standard methods
for analyzing these data have begun to emerge.
While not exhaustive, the following list gives you an overview of the
computational methods we address in this book:
Using public databases and data formats

The first key skill for biologists is to learn to use online search
tools to find information. Literature searching is no longer a
matter of looking up references in a printed index. You can find

38

links to most of the scientific publications you need online. There
are central databases that collect reference information so you
can search dozens of journals at once. You can even set up
"agents" that notify you when new articles are published in an
area of interest. Searching the public molecular-biology
databases requires the same skills as searching for literature
references: you need to know how to construct a query
statement that will pluck the particular needle you're looking for
out of the database haystack. Tools for searching biochemical
literature and sequence databases are introduced in Chapter 6.

Sequence alignment and sequence searching
As mentioned in Chapter 1, being able to compare pairs of DNA
or protein sequences and extract partial matches has made it
possible to use a biological sequence as a database query.
Sequence-based searching is another key skill for biologists; a
little exploration of the biological databases at the beginning of a
project often saves a lot of valuable time in the lab. Identifying
homologous sequences provides a basis for phylogenetic analysis
and sequence-pattern recognition. Sequence-based searching
can be done online through web forms, so it requires no special
computing skills, but to judge the quality of your search results
you need to understand how the underlying sequence-alignment
method works and go beyond simple sequence alignment to
other types of analysis. Tools for pairwise sequence alignment
and sequence-based database searching are introduced in
Chapter 7.

Gene prediction
Gene prediction is only one of a cluster of methods for
attempting to detect meaningful signals in uncharacterized DNA
sequences. Until recently, most sequences deposited in GenBank
were already characterized at the time of deposition. That is,
someone had already gone in and, using molecular biology,
genetic, or biochemical methods, figured out what the gene did.
However, now that the genome projects are in full swing, there's
a lot of DNA sequence out there that isn't characterized.
Software for prediction of open reading frames, genes, exon
splice sites, promoter binding sites, repeat sequences, and tRNA
genes helps molecular biologists make sense out of this

39

unmapped DNA. Tools for gene prediction are introduced in
Chapter 7.

Multiple sequence alignment
Multiple sequence-alignment methods assemble pairwise
sequence alignments for many related sequences into a picture
of sequence homology among all members of a gene family.
Multiple sequence alignments aid in visual identification of sites
in a DNA or protein sequence that may be functionally
important. Such sites are usually conserved; that is, the same
amino acid is present at that site in each one of a group of
related sequences. Multiple sequence alignments can also be
quantitatively analyzed to extract information about a gene
family. Multiple sequence alignments are an integral step in
phylogenetic analysis of a family of related sequences, and they
also provide the basis for identifying sequence patterns that
characterize particular protein families. Tools for creating and
editing multiple sequence alignments are introduced in Chapter
8.

Phylogenetic analysis
Phylogenetic analysis attempts to describe the evolutionary
relatedness of a group of sequences. A traditional phylogenetic
tree or cladogram groups species into a diagram that represents
their relative evolutionary divergence. Branchings of the tree
that occur furthest from the root separate individual species;
branchings that occur close to the root group species into
kingdoms, phyla, classes, families, genera, and so on.
The information in a molecular sequence alignment can be used
to compute a phylogenetic tree for a particular family of gene
sequences. The branchings in phylogenetic trees represent
evolutionary distance based on sequence similarity scores or on
information-theoretic modeling of the number of mutational
steps required to change one sequence into the other.
Phylogenetic analyses of protein sequence families talks not
about the evolution of the entire organism but about
evolutionary change in specific coding regions, although our
ability to create broader evolutionary models based on molecular
information will expand as the genome projects provide more
data to work with. Tools for phylogenetic analysis are introduced
in Chapter 8.

40

Extraction of patterns and profiles from sequence data
A motif is a sequence of amino acids that defines a substructure
in a protein that can be connected to function or to structural
stability. In a group of evolutionarily related gene sequences,
motifs appear as conserved sites. Sites in a gene sequence tend
to be conserved—to remain the same in all or most
representatives of a sequence family—when there is selection
pressure against copies of the gene that have mutations at that
site. Nonessential parts of the gene sequence will diverge from
each other in the course of evolution, so the conserved motif
regions show up as a signal in a sea of mutational noise.
Sequence profiles are statistical descriptions of these motif
signals; profiles can help identify distantly related proteins by
picking out a motif signal even in a sequence that has diverged
radically from other members of the same family. Tools for
profile analysis and motif discovery are introduced in Chapter 8.

Protein sequence analysis
The amino-acid content of a protein sequence can be used as the
basis for many analyses, from computing the isoelectric point
and molecular weight of the protein and the characteristic
peptide mass fingerprints that will form when it's digested with a
particular protease, to predicting secondary structure features
and post-translational modification sites. Tools for feature
prediction are introduced in Chapter 9, and tools for proteomics
analysis are introduced in Chapter 11.

Protein structure prediction
It's a lot harder to determine the structure of a protein
experimentally than it is to obtain DNA sequence data. One very
active area of bioinformatics and computational biology research
is the development of methods for predicting protein structure
from protein sequence. Methods such as secondary structure
prediction and threading can help determine how a protein might
fold, classifying it with other proteins that have similar topology,
but they don't provide a detailed structural model. The most
effective and practical method for protein structure prediction is
homology modeling—using a known structure as a template to
model a structure with a similar sequence. In the absence of
homology, there is no way to predict a complete 3D structure for

41

a protein. Tools for protein structure prediction are introduced in
Chapter 9.

Protein structure property analysis
Protein structures have many measurable properties that are of
interest to crystallographers and structural biologists. Protein
structure validation tools are used by crystallographers to
measure how well a structure model conforms to structural rules
extracted from existing structures or chemical model
compounds. These tools may also analyze the "fitness" of every
amino acid in a structure model for its environment, flagging
such oddities as buried charges with no countercharge or large
patches of hydrophobic amino acids found on a protein surface.
These tools are useful for evaluating both experimental and
theoretical structure models.
Another class of tools can calculate internal geometry and
physicochemical properties of proteins. These tools usually are
applied to help develop models of the protein's catalytic
mechanism or other chemical features. Some of the most
interesting properties of protein structures are the locations of
deeply concave surface clefts and internal cavities, both of which
may point to the location of a cofactor binding site or active site.
Other tools compute hydrogen-bonding patterns or analyze
intramolecular contacts. A particularly interesting set of
properties are the electrostatic potential field surrounding the
protein and other electrostatically controlled parameters such as
individual amino acid pKas, protein solvation energies, and
binding constants. Methods for protein property analysis are
discussed in Chapter 10.

Protein structure alignment and comparison
Even when two gene sequences aren't apparently homologous,
the structures of the proteins they encode can be similar. New
tools for computing structural similarity are making it possible to
detect distant homologies by comparing structures, even in the
absence of much sequence similarity. These tools also are useful
for comparing constructed homology models to the known
protein structures they are based on. protein structure alignment
tools are introduced in Chapter 10.

Biochemical simulation

42

Biochemical simulation uses the tools of dynamical systems
modeling to simulate the chemical reactions involved in
metabolism. Simulations can extend from individual metabolic
pathways to transmembrane transport processes and even
properties of whole cells or tissues. Biochemical and cellular
simulations traditionally have relied on the ability of the scientist
to describe a system mathematically, developing a system of
differential equations that represent the different reactions and
fluxes occurring in the system. However, new software tools can
build the mathematical framework of a simulation automatically
from a description provided interactively by the user, making
mathematical modeling accessible to any biologist who knows
enough about a system to describe it according to the
conventions of dynamical systems modeling. Dynamical systems
modeling tools are discussed in Chapter 11.

Whole genome analysis
As more and more genomes are sequenced completely, the
analysis of raw genome data has become a more important task.
There are a number of perspectives from which one can look at
genome data: for example, it can be treated as a long linear
sequence, but it's often more useful to integrate DNA sequence
information with existing genetic and physical map data. This
allows you to navigate a very large genome and find what you
want. The National Center for Biotechnology Information (NCBI)
and other organizations are making a concerted effort to provide
useful web interfaces to genome data, so that users can start
from a high-level map and navigate to the location of a specific
gene sequence.
Genome navigation is far from the only issue in genomic
sequence analysis, however. Annotation frameworks, which
integrate genome sequence with results of gene finding analysis
and sequence homology information, are becoming more
common, and the challenge of making and analyzing complete
pairwise comparisons between genomes is beginning to be
addressed. Genome analysis tools are discussed in Chapter 11.

Primer design
Many molecular biology protocols require the design of
oligonucleotide primers. Proper primer design is critical for the
success of polymerase chain reaction (PCR), oligo hybridization,

43

DNA sequencing, and microarray experiments. Primers must
hybridize with the target DNA to provide a clear answer to the
question being asked, but, they must also have appropriate
physicochemical properties; they must not self-hybridize or
dimerize; and they should not have multiple targets within the
sequence under investigation. There are several web-based
services that allow users to submit a DNA sequence and
automatically detect appropriate primers, or to compute the
properties of a desired primer DNA sequence. Primer design
tools are discussed in Chapter 11.

DNA microarray analysis
DNA microarray analysis is a relatively new molecular biology
method that expands on classic probe hybridization methods to
provide access to thousands of genes at once. Microarray
experiments are amenable to computational analysis because of
the uniform, standardized nature of their results—a grid of
equally sized spots, each identifiable with a particular DNA
sequence. Computational tools are required to analyze larger
microarrays because the resulting images are so visually
complex that comparison by hand is no longer feasible.
The main tasks in microarray analysis as it's currently done are
an image analysis step, in which individual spots on the array
image are identified and signal intensity is quantitated, and a
clustering step, in which spots with similar signal intensities are
identified. Computational support is also required for the chip-
design phase of a microarray experiment to identify appropriate
oligonucleotide probe sequences for a particular set of genes and
to maintain a record of the identity of each spot in a grid that
may contain thousands of individual experiments. Array analysis
tools are discussed in Chapter 11.

Proteomics analysis
Before they're ever crystallized and biochemically characterized,
proteins are often studied using a combination of gel
electrophoresis, partial sequencing, and mass spectroscopy. 2D
gel electrophoresis can separate a mixture of thousands of
proteins into distinct components; the individual spots of
material can be blotted or even cut from the gel and analyzed.
Simple computational tools can provide some information to aid
in the process of analyzing protein mixtures. It's trivial to

44

compute molecular weight and pI from a protein sequence; by
using these values in combination, sets of candidate identities
can be found for each spot on a gel. It's also possible to
compute, from a protein sequence, the peptide fingerprint that is
created when that protein is broken down into fragments by
enzymes with specific protein cleavage sites. Mass spec analyses
of protein fragments can be compared to computed peptide
fingerprints to further limit the search. Proteomics tools are
covered in Chapter 11.

2.5 A Computational Biology Experiment
Computer-based research projects and computational analysis of experimental data
must follow the same principles other scientific study do. Your results must clearly
answer the question you set out to test, and they must be reproducible by someone
else using the same input data and following the same process.

If you're already doing research in experimental biology, you probably have a pretty
good understanding of the scientific method. Although your data, your method, and
your results are all encoded in computer files rather than sitting on your laboratory
bench, the process of designing a computational "experiment" is the same as you are
used to.

Although it's easy in these days of automation to simply submit a query to a search
engine and use the results without thinking too much about it, you need to
understand your method and analyze your results thoroughly in the same way you
would when applying a laboratory protocol. Sometimes that's easier said than done.
So let's take a walk through the steps involved in defining an experiment in
computational biology.

2.5.1 Identifying the Problem
A scientific experiment always begins with a question. A question can be as broad as
"what is the catalytic mechanism of protein X?" It's not always possible to answer a
complex question about how something works with one experiment. The question
needs to be broken down into parts, each of which can be formulated as a
hypothesis.

A hypothesis is a statement that is testable by experiment. In the course of solving a
problem, you will probably formulate a number of testable statements, some of them
trivial and some more complex. For instance, as a first approach to answering the
question, "What is the catalytic mechanism of protein X?", you might come up with a
preliminary hypothesis such as: "There are amino acids in protein X that are
conserved in other proteins that do the same thing as protein X." You can test this
hypothesis by using a computer program to align the sequences of as many protein
X-type proteins as you can find, and look for amino acids that are identical among all
or most of the sequences. Subsequently you'd move to another hypothesis such as:
"Some of these conserved amino acids in the protein X family have something to do
with the catalytic mechanism." This more complex hypothesis can then be broken

45

down into a number of smaller ones, each of them testable (perhaps by a laboratory
experiment, or perhaps by another computational procedure).

A research project can easily become interminable if the goals are ill-defined or the
question can't feasibly be answered. On the other hand, if you aren't careful, it's
easy to keep adding questions to a project on the basis of new information, allowing
the goal to keep creeping out of reach every time its completion is close. It's easy to
do this with computational projects, because the cost of materials and resources is
low once the initial expense of buying computers and software is covered. It seems
no big loss to just keep playing around on the computer.

We have found that this pathological condition can be avoided if, before embarking
on a computational project, some time is spent on sketching out a specification of
the project's goals and timeline. If you plan to write a project spec, it's easier to
start from written answers to questions such as the following:

· What is the question this project is trying to answer?
· What is the final form you expect the results to take? Is the goal to produce a
computer program, a data set that will be used in an ongoing project, a
journal publication, etc.? What are the requirements for success or completion
of the project?

· What is the approximate timeline of the project?
· What is the general outline of the project? Here, it would be appropriate to
break the project down into constituent parts and describe what you think
needs to be done to finish each part.

· How does your project fit in with the work of others? If you're a lone wolf, you
don't have to worry about this, but research scientists tend to run in packs.
It's good to have a clear understanding of where your work is dependent on
others. If you are writing a project spec for a group of people to work on,
indicate who is responsible for each part of the work.

· At what point will it be unprofitable to continue?

Thinking through questions like these not only gives you a clearer idea of what your
projects are trying to achieve, but also gives you an outline by which you can
organize your research.

2.5.2 Separating the Problem into Simpler Components
In Chapter 7 through Chapter 14, we cover many of the common protocols for using
bioinformatics tools and databases in your research. Coming up with the series of
steps in those protocols wasn't rocket science. The key to developing your own
bioinformatics computer skills is this: know what tools are available and know how to
use them. Then you can take a modular approach to the problems you want to solve,
breaking them down into distinct modules such as sequence searching, sequence
profile detection, homology modeling, model evaluation, etc., for each of which there
are established computational methods.

2.5.3 Evaluating Your Needs
As you break down a problem into modular components, you should be evaluating
what you have, in terms of available data and starting points for modeling, and what

46

you need. Getting from point A to point B, and from point C to point D, won't help
you if there's absolutely no way to get from point B to point C. For instance, if you
can't find any homologous sequences for an unknown DNA sequence, it's unlikely
you'll get beyond that point to do any further modeling. And even if you do find a
group of sequences with a distinctive profile, you shouldn't base your research plans
on developing a structural model if there are no homologous structures in the Protein
Data Bank (PDB). It's just common sense, but be sure that there's a likely way to
get to the result you want before putting time and effort into a project.

2.5.4 Selecting the Appropriate Data Set
In a laboratory setting, materials are the physical objects or substances you use to
perform an experiment. It's necessary for you to record certain data about your
materials: when they were made, who prepared them, possibly how they were
prepared, etc.

The same sort of documentation is necessary in computational biology, but the
difference is that you will be experimenting on data, not on a tangible object or
substance. The source data you work with should be distinguished from the derived
data that constitutes the results of your experiment. You will probably get your
source data from one of the many biomolecular databases. In Chapter 13, you will
learn more about how information is stored in databases and how to extract it. You
need to record where your source data came from and what criteria or method you
use to extract your source data set from the source database.

For example, if you are building a homology model of a protein, you need to account
for how you selected the template structures on which you based your model. Did
you find them using the unknown sequence to search the PDB? Did that approach
provide sufficient template structures, or did you, perhaps, use sequence profile-
based methods to help identify other structures that are more distantly related to
your unknown? Each step you take should be documented.

Criteria for selecting a source data set in computational biology can be quite complex
and nontrivial. For instance, statistical studies of sequence information or of
structural data from proteins are often based on a nonredundant subset of available
protein data. This means that data for individual proteins is excluded from the set if
the proteins are too similar in sequence to other proteins that are being included.
Inclusion of two structure datafiles that describe the same protein crystallized under
slightly different conditions, for example, can bias the results of a computational
study. Each step of such a selection process needs to be documented, either within
your own records, or by reference to a published source.

It's important to remember that all digital sequence and structure data is derived
data. By the time it reaches you, it has been through at least one or two processing
steps, each of which can introduce errors. DNA sequences have been processed by
basecalling software and assembled into maps, analyzed for errors, and possibly
annotated according to structure and function, all by tools developed by other
scientists as human and error-prone as yourself. Protein structure coordinates are
really just a very good guess at where atoms fit into observed electron density data,
and electron density maps in turn have been extrapolated from patterns of x-ray
reflections. This isn't to say that you should not use or trust biological data, but you
should remember that there is some amount of uncertainty associated with each

47

unambiguous-looking character in a sequence or atomic coordinate in a structure.
Crystallographers provide parameters, such as R-factors and b-values, which
quantify the uncertainty of coordinates in macromolecular structures to some extent,
but in the case of sequences, no such estimates are routinely provided within the
datafile.

2.5.5 Identifying the Criteria for Success
Critical evaluation of results is key to establishing the usefulness of computer
modeling in biology. In the context of presenting various tools you can use, we've
discussed methods for evaluating your results, from using BLAST E-values to pick the
significant matches out of a long list of results to evaluating the geometry of a
protein structural model. Before you start computing molecular properties or
developing a computational model, take inventory of what you know, and look for
further information. Then try to see the ways in which that information can validate
your results. This is part of breaking down your problem into steps.

Computational methods almost always produce results. It's not like spectroscopy,
where if there's nothing significant in the cuvette, you don't get a signal. If you do a
BLAST search, you almost always get some hits back. You need to know how to
distinguish meaningful results from garbage so you don't end up comparing apples to
oranges (or superoxide dismutases to alcohol dehydrogenases). If you calculate
physicochemical properties of a protein molecule or develop a biochemical pathway
simulation, you get a file full of numbers. The best possible way to evaluate your
results is to have some experimental results to compare them to.

Before you apply a computational method, decide how to evaluate your results and
what criteria they need to meet for you to consider the approach successful.

2.5.6 Performing and Documenting a Computational
Experiment
When managing results for a computational project, you should make a distinction
between primary results and results of subsequent analyses. You should include a
separate section in your results directory for any analysis steps you may perform on
the data (for instance, the results of statistical tests or curve fitting). This section
should include any observations you may have made about the data or the data
collection. Keep separate the results, which are the data you get from executing the
experiment, and the analysis, which is the insight you bring to the data you have
collected.

One tendency that is common to users of computational biology software is to keep
data and notes about positive results while neglecting to document negative results.
Even if you've done a web-based BLAST search against a database and found
nothing, that is information. And if you've written or downloaded a program that is
supposed to do something, but it doesn't work, that information is valuable too—to
the next guy who comes in to continue your project and wastes time trying to figure
out what works and what doesn't.

2.5.6.1 Documentation issues in computational biology

48

Many researchers, even those who do all their work on the computer, maintain paper
laboratory notebooks, which are still the standard recording device for scientific
research. Laboratory notebooks provide a tangible physical record of research
activities, and maintenance of lab records in this format is still a condition of many
research grants.

However, laboratory notebooks can be an inconvenient source of information for you
or for others who are trying to duplicate or reconstruct your work. Lab notebooks are
organized linearly, with entries sorted only by date. They aren't indexed (unless you
have a lot more free time than most researchers do). They can't be searched for
information about particular subjects, except by the unsatisfactory strategy of sitting
down and skimming the whole book beginning to end.

Computer filesystems provide an intuitive basis for clear and precise organization of
research records. Information about each part of a project can be stored logically,
within the file hierarchy, instead of sequentially. Instead of (or in addition to) a
paper notebook on your bookshelf, you will have electronic record embedded within
your data. If your files are named systematically and simple conventions are used in
structuring your electronic record, Unix tools such as the grep command will allow
you to search your documentation for occurrences of a particular word or date and to
find the needed information much more quickly than you would reading through a
paper notebook.

2.5.6.2 Electronic notebooks

While you can get by with homegrown strategies for building an electronic record of
your work, you may want to try one of the commercial products that are available.
Or, if you're looking for a freeware implementation of the electronic notebook
concept, you can obtain a copy of the software being developed by the DOE2000
Electronic Notebook project. The eNote package lets you input text, upload images
and datafiles, and create sketches and annotations. It's a Perl CGI program and will
run on any platform with a web server and a Perl interpreter installed. When
installed, it's accessible from a web URL on your machine, and you can update your
notebook through a web form. The DOE project is designed to fulfill federal agency
requirements for laboratory notebooks, as scientific research continues to move into
the computer age.

The eNote package is extremely simple to install. It requires that you have a working
web server installed on your machine. If you do, you can download the eNote archive
and unpack it in its own directory, for example /usr/local/enote. The three files
enote.pl, enotelib.pl, and sketchpad.pl are the eNote programs. You need to move
enote.pl to the /home/httpd/cgi-bin directory (or wherever your executable CGI
directory is; this one is the default on Red Hat Linux systems) and rename it
enote.cgi. If you want to restrict access to the notebook, create a special
subdirectory just for the eNote programs, and remember that the directory will show
up in the URL path to access the CGI script. The sketchpad.pl file should also be
moved to this directory, but it doesn't have to be renamed. Move the directories gifs
and new-gifs to a web-accessible location. You can create a directory such as
/home/httpd/enote for this purpose. Leave the file enotelib.pl and the directory
sketchpad where you unpacked them.

49

Finally, you need to edit the first line in both enote.cgi and sketchpad.pl to point to
the location of the Perl executable on your machine. Edit the enote.cgi script to
reflect the paths where you installed the eNote script and its support files. You also
need to choose a directory in which you want eNote to write entries. For instance,
you may want to create a /home/enote/notebook directory and store eNote write
files there. If so, be sure that directory is readable and writable by other users so the
web server (which is usually identified as user nobody) can write there.

The eNote script also contains parameters that specify whether users of the
notebook system can add, delete, and modify entries. If you plan to use eNote
seriously, these are important parameters to consider. Would you allow users to tear
unwanted pages out of a laboratory notebook or write over them so the original
entry was unreadable? eNote allows you to maintain control over what users can do
with their data.

The eNote interface is a straightforward web form, which also links to a Java
sketchpad applet. If you want only specific users with logins on your machine to be
able to access the eNote CGI script, you can set up a .htaccess file in the eNote
subdirectory of your CGI directory. A .htaccess file is a file readable by your web
server that contains commands to restrict access to a particular directory and/or
where it can be accessed from. For more information on creating a .htaccess file,
consult the documentation for the web server you are using—most likely Apache on
most Linux systems.

If you do begin to use an electronic notebook for storing your laboratory notes,
remember that you must save backups of your notebook frequently in case of
system failures.

Part II: The Bioinformatics Workstation
Chapter 3

Chapter 4

Chapter 5

Chapter 3. Setting Up Your Workstation
In this chapter, we discuss how to set up a workstation running the Linux operating
system. Linux is a free, open source version of Unix that makes it possible to turn an
ordinary PC into a powerful workstation. By configuring your system with Linux and
other open source software, you can have access to a lot of powerful computational
biology and bioinformatics tools at a low cost.

In writing this chapter, we encountered a bit of a paradox—in order to get around in
Unix you need to have your computer set up, but in order to set up your computer
you need to know a few things about Unix. If you don't have much experience with
Unix, we strongly suggest that you look through Chapter 4 and Chapter 5 before you
set up a Linux workstation of your own. If you're already familiar with the ins and
outs of Unix, feel free to skip ahead to Chapter 6.

50

3.1 Working on a Unix System
You are probably accustomed to working with personal computers; you may be
familiar with windows interfaces, word processors, and even some data-analysis
packages. But if you want to use computers as a serious component in your
research, you need to work on computer systems that run under Unix or related
multiuser operating systems.

3.1.1 What Does an Operating System Do?
Computer hardware without an operating system is like a dead animal. It isn't going
to react, it isn't going to function; it's just going to sit there and look at you with
glassy eyes until it rots (or rusts). The operating system breathes life into the inert
body of your computer. It handles the low level processes that make hardware work
together and provides an environment in which you can run and develop programs.
The most important function of the operating system is that it allows you convenient
access to your files and programs.

3.1.2 Why Use Unix?
So if the operating system is something you're not supposed to notice, why worry
about which one you're using? Why use Unix?

Unix is a powerful operating system for multiuser computer systems. It has been in
existence for over 25 years, and during that time has been used primarily in industry
and academia, where networked systems and multiuser high-performance computer
systems are required. Unix is optimized for tasks that are only fairly recent additions
to personal-computer operating systems, or which are still not even available in
some PC operating systems: networking with other computers, initiating multiple
asynchronous tasks, retaining unique information about the work environments of
multiple users, and protecting the information stored by individual users from other
users of the system. Unix is the operating system of the World Wide Web; the
software that powers the Web was invented in Unix, and many if not most web
servers run on Unix servers.

Because Unix has been used extensively in universities, where much software for
scientific data analysis is developed, you will find a lot of good-quality, interesting
scientific software written for Unix systems. Computational biology and
bioinformatics researchers are especially likely to have developed software for Unix,
since until the mid-1990s, the only workstations able to visualize protein structure
data in realtime were Silicon Graphics and Sun Unix workstations.

Unix is rich in commands and possibilities. Every distribution of Unix comes with a
powerful set of built-in programs. Everything from networking software to word-
processing software to electronic mail and news readers is already a part of Unix.
Many other programs can be downloaded and installed on Unix systems for free.

It might seem that there's far too much to learn to make working on a Unix system
practical. It's possible, however, to learn a subset of Unix and to become a
productive Unix user without knowing or using every program and feature.

51

3.1.3 Different Flavors of Unix
Unix isn't a monolithic entity. Many different Unix operating systems are out there,
some proprietary and some freely distributed. Most of the commands we present in
this book work in the same way on any system you are likely to encounter.

3.1.3.1 Linux

Linux (LIH-nucks) is an open source version of Unix, named for its original
developer, Linus Torvalds of the University of Helsinki in Finland. Originally
undertaken as a one-man project to create a free Unix for personal computers, Linux
has grown from a hobbyist project into a product that, for the first time, gives the
average personal-computer user access to a Unix system.

In this book, we focus on Linux for three reasons. First, with the availability of Linux,
Unix is cheap (or free, if you have the patience to download and install it). Second,
under Linux, inexpensive PCs regarded as "obsolete" by Windows users become
startlingly flexible and useful workstations. The Linux operating system can be
configured to use a much smaller amount of system resources than the personal
computer operating systems, which means computers that have been outgrown by
the ever-expanding system requirements of PC programs and operating systems can
be given a new lease on life by being reconfigured to run Linux. Third, Linux is an
excellent platform for developing software, so there's a rich library of tools available
for computational biology and for research in general.

You may think that if you install Linux on your computer, you'll be pretty much on
your own. It's a freeware operating system, after all. Won't you have to understand
just about everything about Linux to get it configured correctly on your system?
While this might have been true a few years ago, it's not any more. Hardware
companies are starting to ship personal computers with Linux preinstalled as an
alternative to the Microsoft operating systems. There are a number of companies
that sell distributions of Linux at reasonable prices. Probably the best known of these
is the Red Hat distribution. We should mention that we (the authors) run Red Hat
Linux. Most of our experience—and the examples in this book—are based on that
distribution. If you purchase Linux from one of these companies, you get CDs that
contain not only Linux but many other compatible free software tools. You'll also
have access to technical support for your installation.

3.1.3.1.1 Will Linux run on your computer?

Linux started out as a Unix-like operating system for PCs, but various Linux
development projects now support nearly every available system architecture,
including PCs of all types, Macintosh computers old and new, Silicon Graphics, Sun,
Hewlett-Packard, and other high-end workstations and high-performance
multiprocessor machines. So even if you're starting with a motley mix of old and new
hardware, you can use Linux to create a multiworkstation network of compatible
computers. See Section 3.2 for more information on installing and running Linux.

3.1.3.2 Other common flavors

52

There are many varieties (or "flavors") of Unix out there. The other common free
implementation is the Berkeley Software Distribution (BSD) originally developed at
the University of California-Berkeley. For the PC, there are a handful of commercial
Unix implementations, such as The Santa Cruz Operation (SCO) Unix. Several
workstation makers sell their own platform-specific Unix implementations with their
computers, often with their own peculiarities and quirks. Most common among these
are Solaris (Sun Microsystems), IRIX (Silicon Graphics), Digital Unix (Compaq
Corporation), HP-UX (Hewlett Packard), and AIX (IBM). This list isn't exhaustive, but
it's probably representative of what you will find in most laboratories and computing
centers.

3.1.4 Graphical Interfaces for Unix
Although Unix is a text-based operating system, you no longer have to experience it
as a black screen full of glowing green or amber letters. Most Unix systems use a
variant of the X Window System. The X Window System formats the screen
environment and allows you to have multiple windows and applications open
simultaneously. X windows are customizable so that you can use menu bars and
other widgets much like PC operating systems. Individual Unix shells on the host
machine as well as on networked machines are opened as windows, allowing you to
exploit Unix's multitasking capabilities and to have many shells active
simultaneously. In addition to Unix shells and tools, there are many applications that
take advantage of the X system and use X windows as part of their graphical user
interfaces, allowing these applications to be run while still giving access to the Unix
command line.

The GNOME and KDE desktop environments, which are included in most major Linux
distributions, make your Linux system look even more like a personal computer.
Toolbars, visual file managers, and a configurable desktop replicate the feeling of a
Windows or Mac work environment, except that you can also open a shell window
and run Unix programs.

3.2 Setting Up a Linux Workstation
If you are already using an existing Unix/Linux system, feel free to skip this section
and go directly to the next.

If you are used to working with Macintosh or PC operating systems, the simplest way
to set up a Linux workstation or server is to go out and buy a PC that comes with
Linux preinstalled. VA Linux, for example, offers a variety of Intel Pentium-based
workstations and servers preconfigured with your choice of several of the most
popular Linux distributions.

If you're looking for a complete, self-contained bioinformatics system, Iobion
Systems (http://www.iobion.com) is developing Iobion, a ground-breaking
bioinformatics network server appliance developed using open source technologies.
Iobion is an Intel-based hardware system that comes preinstalled with Linux, Apache
web server, a PostgreSQL relational database, the R statistical language, and a
comprehensive suite of bioinformatics tools and databases. The system serves these
scientific applications to web clients on a local intranet or over the Internet. The
applications include tools for microarray data analysis complete with a microarray

53

database, sequence analysis and annotation tools, local copies of the public sequence
databases, a peer-to-peer networking tool for sharing biological data, and advanced
biological lab tools. Iobion promotes and adheres to open standards in
bioinformatics.

If you already have a PC, your next choice is to buy a prepackaged version of Linux,
such as those offered by Red Hat, Debian, or SuSE. These prepackaged distributions
have several advantages: they have an easy-to-use graphical interface for installing
Linux, all the software they include is packed into package manager (for Red Hat, it's
the Red Hat Package Manager or RPM) archives or similar easily extracted formats,
and they often contain a large number of "extras" that are easier to install from the
distribution disk using a package manager than they are if you install them by hand.

That said, let's assume you've gone out and bought something like the current
version of Red Hat. You'll be asked if you want to do a workstation installation, a
server installation, or a custom installation. What do these choices mean?

Your Linux machine can easily be set up to do some things you may not be used to
doing with a PC or Macintosh. You can set up a web server on your machine, and if
you dig a little deeper into the manuals, you can find out how to give each user of
your machine a place to create his own web page. You can set up an anonymous FTP
server so that guests can FTP in to pick up copies of files you choose to make public.
You can set up an NFS server to allow directories you choose to be mounted on other
machines. These are just some options that set a server apart from a workstation.

If you are inexperienced in Unix administration, you probably want to set up your
first Linux machine as a workstation. With a workstation setup, you can access the
Internet, but your machine can't provide any services to outside users (and you
aren't responsible for maintaining these services). If you're feeling more
adventurous, you can do a custom installation. This allows you to pick and choose
the system components you want, rather than taking everything the installer thinks
you may want.

3.2.1 Installing Linux
We can't possibly tell you everything you need to know to install and run Linux.
That's beyond the scope of this book. There are many excellent books on the market
that cover all possible angles of installing and running Linux, and you can find a good
selection in this book's Bibliography. In this section, we simply offer some advice on
the more important aspects of installation.

3.2.1.1 System requirements

Linux runs on a range of PC hardware combinations, but not all possible
combinations. There are certain minimum requirements. For optimum performance,
your PC should have an 80486 processor or better. Most Linux users have systems
that use Intel chips. If your system doesn't, you should be aware that while Linux
does support a few non-Intel processors, there is less documentation to help you
resolve potential problems on those systems.

54

For optimum performance your system should have at least 16 MB of RAM. If you're
planning to run X, you should seriously consider installing more memory—perhaps
64 MB. X runs well on 16 MB, but it runs more quickly and allows you to open more
windows if additional memory is available.

If you plan to use your Linux system as a workstation, you should have at least 600
MB of free disk space. If you want to use it as a server, you should allow 1.6 GB of
free space. You can never have too much disk space, so if you are setting up a new
system, we recommend buying the largest hard drive possible. You'll never regret it.

In most cases the installation utility that comes with your distribution can determine
your system configuration automatically, but if it fails to do so, you must be
prepared to supply the needed information. Table 3-1 lists the configuration
information you need to start your installation.

Table 3-1. Configuration Information Needed to Install Linux
Device Information Needed

Hard drive(s)

· The number, size, and type of each hard drive

· Which hard drive is first, second, and so on

· Which adapter type (IDE or SCSI) is used by each drive

· For each IDE drive, if the BIOS is set in LBS mode

RAM · The amount of installed RAM

CD-ROM drive(s)

· Which adapter type (IDE, SCSI, other) is used by each
drive

· For each drive using a non-IDE, non-SCSI adapter, the
make and model of the drive

SCSI adapter (if
any)

· The make and model of the card

Network adapter
(if any)

· The make and model of the card

Mouse

· The type (serial, PS/2, or bus)

· The protocol (Microsoft, Logitech, MouseMan, etc.)

· The number of buttons

· For a serial mouse, the serial port to which it's connected

Video adapter · The make and model of the card

55

· The amount of video RAM

To obtain information, you may need to examine your system's BIOS settings or
open the case and look at the installed hardware. Consult your system
documentation or your system administrator to learn how to do so.

Here are three of the more popular Linux distributions:

· Red Hat (http://www.redhat.com/support/hardware/)
· boot: Debian (http://www.debian.org/doc/FAQ/ch-compat.html)
· SuSE (http://www.suse.com)

All have well-organized web sites with information about the hardware their
distributions support. Once you've collected the information in Table 3-1, take a few
minutes to check the appropriate web site to see if your particular PC hardware
configuration is supported.

3.2.1.2 Partitioning your disk

Linux runs most efficiently on a partitioned hard drive. Partitioning is the process of
dividing your disk up into several independent sections. Each partition on a hard
drive is a separate filesystem. Files in one filesystem are to some extent protected
from what goes on in other filesystems. If you download a bunch of huge image files,
you can fill up only the partition in which your home directories live; you can't make
the machine unusable by filling up all the available space for essential system
functions. And if one partition gets corrupted, you can sometimes fix the problem
without reformatting the entire drive and losing data stored in the other partitions.

When you start a Red Hat Linux installation, you need the Linux boot disk in your
floppy drive and the Linux CD-ROM in your CD drive. When you turn the computer
on, you almost immediately encounter an installation screen that offers several
installation mode options. At the bottom of the screen, there is a boot: prompt.
Generally, you should just hit the Enter key; however, if you're using a new model of
computer, especially a laptop, you may want to enter text, then press the Enter key
for a text-mode installation, in case your video card isn't supported by the current
Linux release.

Click through the next few screens, selecting the appropriate language and
keyboard. You'll come to a point at which you're offered the option of selecting a
GNOME workstation, a KDE workstation, a server, or a custom installation. At this
point, you can just choose one of the single user workstation options, and you're
essentially done. However, we suggest doing a custom installation to allow you
greater control over what is installed on your computer and where it's installed.

If you have a single machine that's not going to be interacting with other machines
on the network, you can probably get away with putting the entire Linux installation
into one big filesystem, if that's what you want. But if you're setting up a machine
that will, for instance, share software in its /usr/local directory with all the other
machines in your lab, you'll want to do some creative partitioning.

56

On any given hard disk, you can have four partitions. Partitions can be of two types:
primary and extended. Within an extended partition, you can have as many
subpartitions as you like. Red Hat and other commercial Linux distributions have
simple graphical interfaces that allow you to format your hard disk. More advanced
users can use the fdisk program to achieve precise partitioning. Refer to one of the
"Learning Linux" books we recommend in the Bibliography for an in-depth discussion
of partitioning and how to use the fdisk program.

3.2.1.3 Selecting major package groupings

After you've set up partitions on your disk, chosen mount points for your partitions,
and completed a few other configuration steps, you need to pick the packages to
install.

First, go through the Package Group Selection list. You'll definitely need printer
support; the X Window System; either the GNOME or KDE desktop (we like KDE);
mail, web, and news tools, graphics manipulation tools; multimedia support; utilities;
and networked workstation support. If you'll be installing software (and you will),
you need a number of items in the development package group (C, FORTRAN, and
other compilers come in handy, as do some development libraries). You may also
want to install the Emacs text editor and the authoring/publishing tools. Depending
on where you use your system from, you may need dial-up workstation support.

The rest of the package groups add server functionality to your machine. If you want
your machine to function as a web server, add the web server package group. If you
want to make some of the directories on your machine available for NFS mounting,
choose the NFS server group. If you plan to create your own databases, you may
want to set up your machine as a PostgreSQL server. Generally, if you have no idea
what it is or how you'd use it, you probably don't need to install it at this point.

If you're concerned about running out of space on your machine, you can now sift
through the contents of each package grouping and get rid of software you won't be
using. For example, the "Mail, Web and News" package grouping contains many
different types of software for reading email and newsgroups. Don't install it all, just
pick your favorite package, and get rid of the rest. (In case you're wondering what to
choose, here's a hint: it's very easy to configure the Netscape browser to do all the
mail and news reading you'll need.) If you're installing a Red Hat system, check
under "Applications/Editors" and make sure you have the vim editor selected; in
"Applications/Engineering," select gnuplot; and in "Applications/Publishing," select
enscript. Don't worry if you don't install something at the beginning and find you
need to install it later, it's pretty easy to do.

3.2.1.4 Other useful packages to add

Once you've done a basic Linux installation on your machine, you can add new
packages easily using the kpackage command (if you're using the KDE desktop
environment) or gnorpm (if you are using GNOME).

In order to compile some of the software we'll be discussing in the next few
chapters, and to expand the functionality of your Linux workstation, you may want to
install some of the following tools. The first set of tools are from the Red Hat Linux
Power Tools CD:

57

R

A powerful system for statistical computation and graphics. It's based on S
and consists of a high-level language and a runtime environment.

OpenGL /Mesa

A development kit for creating graphical user interfaces that enhances
performance of some molecular visualization software.

LessTif

A widget set for application development. You might not use it directly, but
it's used when you compile some of the software discussed later in this book.
Install at least the main package and the client package.

Xbase

Another widget set.

MySQL

A database server for smaller data sets. It's useful if you're just starting to
build your own databases.

octave

A MatLab-like high-level language for numerical computations.

xv

A multipurpose image-editing and conversion tool.

xemacs

A powerful X Windows-based editor with special extensions for editing source
code.

plugger

A generic Netscape plug-in that supports many formats.

You can download from the Web and install the following tools:

JDK /JRE (http://java.sun.com)

A Java Development Kit and Java Runtime Environment are needed if you
want to use Java-based tools such as the Jalview sequence editor we discuss
in Chapter 4. They are freely available for Linux from IBM, Sun, and

58

Blackdown (http://blackdown.org). Blackdown also offers a Java plug-in for
Netscape, which is required to run some of the applications we discuss.

NCBI Toolkit (ftp://ncbi.nlm.nih.gov/toolbox/ncbi_tools/README.htm)

A software library for developers of biology applications. It's required in order
to compile some software originating at NCBI.

StarOffice (http://www.staroffice.com)

A comprehensive office productivity package freely available from Sun
Microsystems. It replaces most or all functionality of Microsoft Office and
other familiar office-productivity packages.

3.3 How to Get Software Working
You've gone out and done the research and found a bioinformatics software package
you want to install on your own computer. Now what do you do?

When you look for Unix software on the Web, you will find that it's distributed in a
number of different formats. Each type of software distribution requires a different
type of handling. Some are very simple to install, almost like installing software on a
Mac or PC. On the other hand, some software is distributed in a rudimentary form
that requires your active intervention to get it running. In order to get this software
working, you may have to compile it by hand or even modify the directions that are
sent to the compiler so that the program will work on your system. Compiling is the
process of converting software from its human-readable form, source code, to a
machine-readable executable form. A compiler is the program that performs this
conversion.

Software that's difficult to install isn't necessarily bad software. It may be high-
quality software from a research group that doesn't have the resources to produce
an easy-to-use installation kit. While this is becoming less common, it's still common
enough that you will need to know some things about compiling software.

3.3.1 Unix tar Archives
Software is often distributed as a tar archive, which is short for "tape archive." We
discuss tar and other file-compression options in more detail in Chapter 5. Not
coincidentally, these archives are one of the most common ways to distribute Unix
software on the Internet. tar allows you to download one file that contains the
complete image of the developer's working software installation and unpack it right
back into the correct subdirectories. If tar is used with the p option, file permissions
can even be preserved. This ensures that, if the developer has done a competent job
of packing all the required files in the tar archive, you can compile the software
relatively easily.

tar archives are often compressed further using either the Unix compress command
(indicated by a .tar.Z extension) or with gzip (indicated by a .tar.gz or .tgz
extension).

ftp://ncbi.nlm.nih.gov/toolbox/ncbi_tools/README.htm

59

3.3.2 Binary Distributions
Software can be distributed either as uncompiled source code or binaries. If you
have a choice, and if you don't know any reason to do otherwise, choose the binary
distribution. It will probably save you a lot of headaches.

Binary software distributions are precompiled and (at least in theory) ready to run on
your machine. When you download software that is distributed in binary form, you
will have a number of options to choose from. For example, the following listing is
the contents of the public FTP site for the BLAST sequence alignment software. There
are several archives available, each for a different operating system; if you're going
to run the software on a Linux workstation, download the file blast.linux.tar.Z.
README.bls 52 Kb Wed Jan 26 18:45:00 2000
blast.alphaOSF1.tar.Z 12756 Kb Wed Jan 26 18:40:00 2000 Unix
Tape Archive
blast.hpux11.tar.Z 11964 Kb Wed Jan 26 18:43:00 2000 Unix
Tape Archive
blast.linux.tar.Z 9334 Kb Wed Jan 26 18:41:00 2000 Unix
Tape Archive
blast.sgi.tar.Z 14746 Kb Wed Jan 26 18:44:00 2000 Unix
Tape Archive
blast.solaris.tar.Z 12724 Kb Wed Jan 26 18:37:00 2000 Unix
Tape Archive
blast.solarisintel.tar.Z 10679 Kb Wed Jan 26 18:43:00 2000 Unix
Tape Archive
blastz.exe 3399 Kb Wed Jan 26 18:44:00 2000 Binary
Executable

Here are the basic binary installation steps:

1. Download the correct binaries. Be sure to use binary mode when you
download. Download and read the instructions (usually a README or INSTALL
file).

2. Follow the instructions.
3. Make a new directory and move the archive into it, if necessary.
4. uncompress (*.Z) or gunzip (*.gz) to uncompress the file.
5. Use tar tf to examine the contents of the archive and tar xvf to extract it.
6. Run configuration and installation scripts, if present.
7. Link binary into a directory in your default path using ln -s, if necessary.

3.3.3 RPM Archives
RPM archives are a new kind of Unix software distribution that has recently become
popular. These archives can be unpacked using the command rpm. The Red Hat
Package Manager program is included in Red Hat Linux distributions and is
automatically installed on your machine when you install Linux. It can also be
downloaded freely from http://www.rpm.org and used on any Linux or other Unix
system. rpm creates a software database on your machine and simplifies
installations and updates, and even allows you to create RPM archives. RPM archives
come in either source or binary form, but aside from the question of selecting the
right binary, the installation is equally simple either way.

http://www.rpm.org

60

(As we introduce commands, we'll show you the format of the command line for each
command—for example, "Usage: man name" -- and describe the effects of some
options we find most useful.)

Usage: rpm --[options] *.rpm

Here are the important rpm options:

rebuild

Builds a package from a source RPM

install

Installs a new package from a binary RPM

upgrade

Upgrades existing software

uninstall (or erase)

Removes an installed package

query

Checks to see if a package is installed

verify

Checks information about installed files in a package

3.3.3.1 GnoRPM

Recent versions of Linux that include the GNOME user interface also include an
interactive installation tool called GnoRPM. It can be accessed from the System folder
in the main GNOME menu. To install software from a CD-ROM with GnoRPM, simply
insert and mount the CD-ROM, click the Install button in GnoRPM, and GnoRPM
provides a selectable list of every package on the CD-ROM you haven't already
installed. You can also uninstall and update packages with GnoRPM, ensuring that
the entire package is cleanly removed from your system. GnoRPM informs you if
there are package dependencies that require you to download code libraries or other
software before completing the installation.

3.3.4 Source Distributions
Sometimes the correct binary isn't available for your system, there's no RPM archive,
and you have no choice but to install from source code.

61

Source distributions can be easy or hard to install. The easy ones come with a
configuration script, an install script, and a Makefile for your operating system that
holds the instructions to the compiler.

An example of an easy-to-install package is the LessTif source code distribution.
LessTif is an open source version of the OSF/Motif window manager software. Motif
was developed for high-end workstations and costs a few thousand dollars a year to
license; LessTif supports many Motif applications (such as the multiple sequence
alignment package ClustalX and the useful 2D plotting package Grace, for example)
for free. When the LessTif distribution is unpacked, it looks like:
AUTHORS KNOWN_BUGS acconfig.h configure ltmain.sh
BUG-REPORTING Makefile acinclude.m4 configure.in make.out
COPYING Makefile.am aclocal.m4 doc missing
COPYING.LIB Makefile.in clients etc mkinstalldirs
CREDITS NEWS config.cache include scripts
CURRENT_NOTES NOTES config.guess install-sh test
CVSMake README config.log lib test_build
ChangeLog RELEASE-POLICY config.status libtool
INSTALL TODO config.sub ltconfig

Configuration and installation of LessTif on a Linux workstation is a practically
foolproof process. As the superuser, move the source tar archive to the /usr/local/src
directory. Uncompress and extract the archive. Inside the directory that is created
(lesstif or lesstif.0-89, for example), enter ./configure. The configuration script will
take a while to run; when it's done, enter make. Compilation will take several
minutes; at the end, edit the file /etc/ld.so.conf. Add the line /usr/lesstif/lib, save
the file, and then run ldconfig -v to make the shared LessTif libraries available on
your machine.

Complex software such as LessTif is assembled from many different source code
modules. The Makefile tells the compiler how to put them together into one large
executable. Other programs are simple: they have only one source code file and no
Makefile, and they are compiled with a one-line directive to the compiler. You should
be able to tell which compiler to use by the extension on the program filename. C
programs are often labeled *.c, FORTRAN programs *.f, etc. To compile a C
program, enter gcc program.c -o program; for a FORTRAN program, the command is
g77 program.f -o program. The manpages for the compilers, or the program's
documentation (if there is any) should give you the form and possible arguments of
the compiler command.

Compilers convert human-readable source code into machine-readable binaries. Each
programming language has its own compilers and compiler instructions. Some
compilers are free, others are commercial. The compilers you will encounter on Linux
systems are gcc, the GNU Project C and C++ compiler, and g77, the GNU Project
FORTRAN compiler.[1] In computational biology and bioinformatics, you are likely to
encounter programs written in C, C++, FORTRAN, Perl, and Java. Use of other
languages is relatively rare. Compilers or interpreters for all these languages are
available in open source distributions.

[1] The GNU project is a collaborative project of the Free Software Foundation to develop a
completely open source Unix-like operating system. Linux systems are, formally, GNU/Linux
systems as they can be distributed under the terms of the GNU Public License (GPL), the
license developed by the GNU project.

62

Difficult-to-install programs come in many forms. One of the main problems you may
encounter will be source code with dependencies on code libraries that aren't already
installed on your machine. Be sure to check the documentation or the README file
that comes with the software to determine whether additional code or libraries are
required for the program to run properly.

An example of an undeniably useful program that is somewhat difficult to install is
ClustalX, the X windows interface to the multiple sequence alignment program
ClustalW. In order to install ClustalX successfully on a Linux workstation, you first
need to install the NCBI Toolkit and its included Vibrant libraries. In order to create
the Vibrant libraries, you need to install the LessTif libraries and to have XFree86
development libraries installed on your computer.

Here are the basic steps for installing any package from source code:

1. Download the source code distribution. Use binary mode; compressed text
files are encoded.

2. Download and read the instructions (usually a README or INSTALL file;
sometimes you have to find it after you extract the archive).

3. Make a new directory and move the archive into it, if necessary.
4. uncompress (*.Z) or gunzip (*.gz) the file.
5. Extract the archive using tar xvf or as instructed.
6. Follow the instructions (did we say that already?).
7. Run the configuration script, if present.
8. Run make if a Makefile is present.
9. If a Makefile isn't present and all you see are *.f or *.c files, use gcc or g77 to
compile them, as discussed earlier.

10.Run the installation script, if present.
11. Link the newly created binary executable into one of the binary-containing
directories in your path using ln -s (this is usually part of the previous step,
but if there is no installation script, you may need to create the link by hand).

3.3.5 Perl Scripts
The Perl language is used to develop web applications and is frequently used by
computational biologists. Perl programs (called scripts) have the extension *.pl (or
*.cgi if they are web applications). Perl is an interpreted language; in other words,
Perl programs don't have to be compiled in order to run. Instead, each command in
a Perl script is sent to a program called the Perl interpreter, which executes the
commands.[2]

[2] There is now a Perl compiler, which can optionally be used to create binary executables
from Perl scripts. This can speed up execution.

To run Perl programs, you need to have the Perl interpreter installed on your
machine. Most Linux distributions contain and automatically install Perl. The most
recent version of Perl can always be obtained from http://www.perl.com, along with
plenty of helpful information about how to use Perl in your own work. We discuss
some of the basic elements of Perl in Chapter 12.

3.3.6 Putting It in Your Path

http://www.perl.com

63

When you give a command, the default path or lookup path is where the system
expects to find the program (which is also known as the executable). To make life
easier, you can link the binary executable created when you compile a program to a
directory like /usr/local/bin, rather than typing the full pathname to the program
every time you run it. If you're linking across filesystems, use the command ln -s
(which we cover in Chapter 4) to link the command to a directory of executable files.
Sometimes this results in the error "too many levels of symbolic links" when you try
to run the program. In that case, you have to access the executable directly or use
mv or cp to move the actual executable file into the default path. If you do this, be
sure to also move any support files the program needs, or create a link to them in
the directory in which the program is being run.

Some software distributions automatically install their executables in an appropriate
location. The command that usually does this is make install. Be sure to run this
command after the program is compiled. For more information on symbolic linking,
refer to one of the Unix references listed in the Bibliography, or consult your system
administrator.

3.3.7 Sharing Software Among Multiple Users
Before you start installing software on a Unix system, one of the first things to do is
to find out where shared software and data are stored on your machines. It's
customary to install local applications in /usr/local, with executable files in
/usr/local/bin. If /usr/local is set up as a separate partition on the system, it then
becomes possible to upgrade the operating system without overwriting local software
installations.

Maintaining a set of shared software is a good idea for any research group.
Installation of a single standard version of a program or software package by the
system administrator ensures that every group member will be using software that
works in exactly the same way. This makes troubleshooting much easier and keeps
results consistent. If one user has a problem running a version of a program that is
used by everyone in the group, the troubleshooting focus can fall entirely on the
user's input, without muddying the issue by trying to figure out whether a local
version of the program was compiled correctly.

For the most part, it's unnecessary for each user of a program to have her own copy
of that program residing in a personal directory. The main exception to this is if a
user is actually modifying a program for her own use. Such modifications should not
be applied to the public, standard version of the program until they have been
thoroughly tested, and therefore the user who is modifying the program needs her
own version of the program source and executable.

3.4 What Software Is Needed?
New computational biology software is always popping up, but through a couple of
decades of collective experience, a consensus set of tools and methods has emerged.
Many scientists are familiar with standard commercial packages for sequence
analysis, such as GCG, and for protein structure analysis, such as Quanta or Insight.
For beginners, these packages provide an integrated interface to a variety of tools.

64

Commercial software packages for sequence analysis integrate a number of
functions, including mapping and fragment assembly, database searching, gene
discovery, pairwise and multiple sequence analysis, motif identification, and
evolutionary analysis. One caveat is that these software packages can be
prohibitively expensive. It can be difficult, especially for educational institutions and
research groups on a limited budget, to purchase commercial software and pay the
annual costs for license maintenance (which can be in the many thousands of
dollars).

A related cost issue is that many commercial software packages, especially those for
macromolecular structure analysis, don't yet run on consumer PCs. These packages
were originally developed for high-end workstations when these workstations were
the only computers with sufficient graphics capability to display protein structures.
Although these days most home computers have high-powered graphics cards, the
makers of commercial molecular modeling software have been slow to keep up.

While commercial computational biology software packages can be excellent and
easy to use, they often seem to lag at least a couple of years behind cutting-edge
method development. The company that produces a commercial software package
usually commits to only one method for each type of tool, buys it at a particular
phase in its development cycle, focuses on turning it into a commercially viable
product, and may not incorporate developments in the method into their package in
a timely fashion, or at all.

On the other hand, while academic software is usually on the cutting edge, it can be
poorly written and hard to install. Documentation (beyond the published paper that
describes the software) may be nonexistent. Graphical user interfaces in academic
software packages are often rudimentary, which can be aggravating for the
beginning user.

With this book, we've taken the "science on a shoestring" approach. In Chapter 6,
Chapter 7, Chapter 9, Chapter 10, and Chapter 11 we've compiled quick-reference
tables of fundamental techniques and free software applications you can use to
analyze your data. Hopefully, these will help you to know what you need to do, how
to seek out the tools that do it, and how to put them both together in the way that
best suits your needs. This approach keeps you independent of the vagaries of the
software industry and in touch with the most current methods.

Chapter 4. Files and Directories in Unix
Now that you've set up your workstation, let's spend some time talking about how to
get around in a Unix system. In this chapter, we introduce basic Unix concepts,
including the structure of the filesystem, file ownership, and commands for moving
around the filesystem and creating files.[1] Another important focus of this chapter,
however, is the approach you should take to organizing your research data so that it
can be accessed efficiently by you and by others.

[1] Throughout this chapter and Chapter 5, we introduce many Unix commands. Our quick and
dirty approach to outlining the functions of these commands and their options should help you
get started working fast, but it's by no means exhaustive. The Bibliography provides several
excellent Unix books that will help you fill in the details.

65

4.1 Filesystem Basics
All computer filesystems, whether on Unix systems or desktop PCs, are basically the
same. Files are named locations on the computer's storage device. Each filename is a
pointer to a discrete object with a beginning and end, whether it's a program that
can be executed or simply a set of data that can be read by a program. Directories
or folders are containers in which files can be grouped. Computer filesystems are
organized hierarchically, with a root directory that branches into subdirectories and
subdirectories of subdirectories.

This hierarchical system can help organize and share information, if used properly.
Like the taxonomy of species developed by the early biologists, your file hierarchy
should organize information from the general level to the specific. Each time the
filesystem splits into subdirectories, it should be because there are meaningful
divisions to be created within a larger class of files.

Why should you organize your computer files in a systematic, orderly way? It seems
like an obvious question with an obvious answer. And yet, a common problem faced
by researchers and research groups is failure to share information effectively.
Problems with information management often become apparent when a research
group member leaves, and others are required to take over his project.

Imagine you work with a colleague who keeps all his books and papers piled in
random stacks all over his office. Now imagine that your colleague gets a new job
and needs to depart in a hurry—leaving behind just about everything in his office.
Your boss tells you that you can't throw away any of your colleague's papers without
looking at them, because there might be something valuable in there. Your colleague
has not organized or categorized any of his papers, so you have to pick up every
item, look at it, determine if it's useful, and then decide where you want to file it.
This might be a week's work, if you're lucky, and it's guaranteed to be a tough job.

This kind of problem is magnified when computer files are involved. First of all, many
highly useful files, especially binaries of programs, aren't readable as text files by
users. Therefore, it's difficult to determine what these files do if they're not
documented. Other kinds of files, such as files of numerical data, may not contain
useful header information. Even though they can be read as text, it may be next to
impossible to figure out their purpose.

Second, space constraints on computer system usage are much more nebulous than
the walls of an office. As disk space has become cheaper, it's become easier for
users of a shared system simply never to clean up after themselves. Many programs
produce multiple output files and, if there's no space constraint that forces you to
clean up while running them, can produce a huge mess in a short time.

How can you avoid becoming this kind of problem for your colleagues? Awareness of
the potential problems you can cause is the first step. You need to know what kinds
of programs and files you should share with others and which you should keep in
your own directories. You should establish conventions for naming datafiles and
programs and stick to these conventions as you work. You should structure your
filesystem in a sensible hierarchy. You should keep track of how much space you are
using on your computer system and create usable archives of your data when you no

66

longer need to access it frequently. You should create informative documentation for
your work within the filesystem and within programs and datafiles.

The nature of the filesystem hierarchy means that you already have a powerful
indexing system for your work at your fingertips. It's possible to do computer-based
research and be just as disorganized as that coworker who piles all his books and
papers in random stacks all over his office. But why would you want to do that?
Without much more effort, you can use your computer's filesystem to keep your
work organized.

4.1.1 Moving Around the Directory Hierarchy
Like all modern operating systems, the file hierarchy on a Unix system is structured
as a tree. You may be used to this from PC operating systems. Open one folder, and
there can be files and more folders inside it, layered as deep as you want to go.
There is a root directory, designated as /. The root directory branches into a finite
number of files and subdirectories. On a well-organized system, each of these
subdirectories contains files and other subdirectories pertaining to a particular topic
or system function.

Of course, there's nothing inside your computer that really looks like a tree. Files are
stored on various media—most commonly the hard disk, which is a recordable device
that lives in your computer. As its name implies, the hard disk is really a disk. And
the tree structure that you perceive in Unix is simply a way of indexing what is on
that disk or on other devices such as CDs, floppy disks, and Zip disks, or even on the
disks of every machine in a group of networked computers. Unix has extensive
networking capabilities that allow devices on networked computers to be mounted on
other computers over the network. Using these capabilities, the filesystems of
several networked computers can be indexed as if they were one larger, seamless
filesystem.

4.1.2 Paths to Files and Directories
Each file on the filesystem can be uniquely identified by a combination of a filename
and a path. You can reference any file on the system by giving its full name, which
begins with a / indicating the root directory, continues through a list of subdirectories
(the components of the path) and ends with the filename. The full name, or absolute
path, of a file in someone's home directory might look like this:
/home/jambeck/mustelidae/weasels.txt

The absolute path describes the relationship of the file to the root directory, /. Each
name in the path represents a subdirectory of the prior directory, and / characters
separate the directory names.

Every file or directory on the system can be named by its absolute path, but it can
also be named by a relative path that describes its relationship to the current
working directory. Files in the directory you are in can be uniquely identified just by
giving the filename they have in the current working directory. Files in subdirectories
of your current directory can be named in relation to the subdirectory they are part
of. From jambeck 's home directory, he can uniquely identify the file weasels.txt as

67

mustelidae/weasels.txt. The absence of a preceding / means that the path is defined
relative to the current directory rather than relative to the root directory.

If you want to name a directory that is on the same level or above the current
working directory, there is a shorthand for doing so. Each directory on the system
contains two links, ./ and ../, which refer to the current directory and its parent
directory (the directory it's a subdirectory of), respectively. If user jambeck is
working in the directory /home/jambeck /mustelidae/weasels, he can refer to the
directory /home/jambeck /mustelidae/otters as ../otters. A subdirectory of a
directory on the same level of the hierarchy as /home/jambeck /mustelidae would be
referred to as ../../didelphiidae/opossums.

Another shorthand naming convention, which is implemented in the popular csh and
tcsh shell environments, is that the path of the home directory can be abbreviated as
~. The directory home/jambeck /mustelidae can then be referred to as
~/mustelidae.

4.1.3 Using a Process-Based File Hierarchy
Filesystems can be deep and narrow or broad and shallow. It's best to follow an
intuitive scheme for organizing your files. Each level of hierarchy should be related to
a step in the process you've used to carry out the project. A filesystem is probably
too shallow if the output from numerous processing steps in one large project is all
shoved together in one directory. However, a project directory that involves several
analyses of just one data object might not need to be broken down into
subdirectories. The filesystem is too deep if versions of output of a process are
nested beneath each other or if analyses that require the same level of processing
are nested in subdirectories. It's much easier to for you to remember and for others
to understand the paths to your data if they clearly symbolize steps in the process
you used to do the work.

As you'll see in the upcoming example, your home directory will probably contain a
number of directories, each containing data and documentation for a particular
project. Each of these project directories should be organized in a way that reflects
the outline of the project. Each directory should contain documentation that relates
to the data within it.

4.1.4 Establishing File-Naming Conventions for Your Work
Unix allows an almost unlimited variability in file naming. Filenames can contain any
character other than the / or the null character (the character whose binary
representation is all zeros). However, it's important to remember that some
characters, such as a space, a backslash, or an ampersand, have special meaning on
the command line and may cause problems when naming files. Filenames can be up
to 255 characters in length on most systems. However, it's wise to aim for uniformity
rather than uniqueness in file naming. Most humans are much better at
remembering frequently used patterns than they are at remembering unique 255-
character strings, after all.

A common convention in file naming is to name the file with a unique name followed
by a dot (.) and then an extension that uniquely indicates the file type.

68

As you begin working with computers in your research and structuring your data
environment, you need to develop your own file-naming conventions, or preferably,
find out what naming conventions already exist and use them consistently
throughout your project. There's nothing so frustrating as looking through old data
sets and finding that the same type of file has been named in several different ways.
Have you found all the data or results that belong together? Can the file you are
looking for be named something else entirely? In the absence of conventions, there's
no way to know this except to open every unidentifiable file and check its format by
eye. The next section provides a detailed example of how to set up a filesystem that
won't have you tearing out your hair looking for a file you know you put there.

Here are some good rules of thumb to follow for file-naming conventions:

· Files of the same type should have the same extension.
· Files derived from the same source data should have a common element in
their unique names.

· The unique name should contain as much information as possible about the
experiment.

· Filenames should be as short as is possible without compromising uniqueness.

You'll probably encounter preestablished conventions for file naming in your work.
For instance, if you begin working with protein sequence and structure datafiles, you
will find that families of files with the same format have common extensions. You
may find that others in your group have established local conventions for certain
kinds of datafiles and results. You should attempt to follow any known conventions.

4.1.5 Structuring a Project: An Example
Let's take a look at an example of setting up a filesystem. These are real directory
layouts we have used in our work; only the names have been changed to protect the
innocent. In this case, we are using a single directory to hold the whole project.

It's useful to think of the filesystem as a family tree, clustering related aspects of a
project into branches. The top level of your project directory should contain two text
files that explain the contents of the directories and subdirectories. The first file
should contain an outline of the project, with the date, the names of the people
involved, the question being investigated, and references to publications related to
this project. Tradition suggests that such informational files should be given a name
along the lines of README or 00README. For example, in the shards project, a
minimal README file might contain the following:
98-05-22
Project: Shards
Personnel: Per Jambeck, Cynthia Gibas
Question: Are there recurrent structural words in the three-dimensional
structure
of proteins?
Outline: Automatic construction of a dictionary of elements of local
structure in
proteins using entropy maximization-based learning.

69

The second file should be an index file (named something readily recognizable like
INDEX) that explains the overall layout of the subdirectories. If you haven't really
collected much data yet, a simple sketch of the directories with explanations should
do. For example, the following file hierarchy:
98-03-22 PJ
Layout of the Shards directory
(see README in subdirectories for further details)
/shards
/shards/data
/shards/data/sequences
/shards/data/structures
/shards/data/results
/shards/data/results/enolases
/shards/data/results/globins
/shards/data/test_cases
/shards/graphics
/shards/text
/shards/text/notebook
/shards/text/reports
/shards/programs
/shards/programs/source
/shards/programs/scripts
/shards/programs/bin

may also be represented in graphical form, as shown in Figure 4-1.

Figure 4-1. Tree diagram of a hierarchy

In this directory, we've made the first distinction between programs and data
(programs contains the software we write, and data contains the information we get
from databases, or files the programs generate). Within each subdirectory, we
further distinguish between types of data (in this case, protein structures and protein
sequences), and results (run on two sets of proteins, the enolase family and the
globin superfamily) gleaned from running our programs on the data, and some test
cases. Programs are also subdivided according to types, namely whether they are
the human-readable program listings (source code), scripts that aid in running the
programs, or the binaries of the programs.

70

As we mentioned earlier, when you store data in files, you should try to use a terse
and consistent system for naming files. Excessively long filenames that describe the
exact contents of a file but change for different file types (like all-GPCR-loops-in-
SWISSPROT-on-99-7-14.text) will cause problems once you start using the facilities
Unix provides for automatically searching for and updating files. In the shards
project, we began with protein structures taken from the Protein Data Bank (PDB).
We then used a homegrown Perl program called unique.pl to generate a
nonredundant database, in which no protein's sequence had greater than 25%
similarity to any other protein in the set. Thus, we can represent this information
economically using the filename PDB-unique-25 for files related to this data set. For
example, the list of the names of proteins in the set, and the file containing the
proteins' sequences in FASTA format (a common text-file format for storing
macromolecular sequence data), are stored, respectively, in:
PDB-unique-25.list
PDB-unique-25.fasta

Files containing derived data can be named consistently as well. For example, the file
containing all seven-residue pieces of protein structure derived from the
nonredundant set is called PDB-unique-25-7.shard. This way, if you need to do
something with all files pertaining to this nonredundant database, you can use the
wildcard PDB-unique-25*, ignoring databases generated by different programs or
those generated with unique.pl at different similarity thresholds.

File naming conventions can take you only so far in organizing a project; the simple
naming schemes we've laid out here will become more and more confusing as a
project grows. For larger projects, you should consider using a database
management system (DBMS) to manage your data. We introduce database concepts
in Chapter 13.

4.2 Commands for Working with Directories and Files
Now that you have the basics of filesystems, let's dig into the specifics of working
with files and directories in Unix. In the following sections, we cover the Unix
commands for moving around the filesystem, finding files and directories, and
manipulating files and directories.

As we introduce commands, we'll show you the format of the command line for each
command (for example, "Usage: man name"), and describe the effects of some
options we find most useful.

4.2.1 Moving Around the Filesystem
When you open a window on a Linux system, you see a command prompt:
$

Command prompts can look different depending on the configuration of your system
and your shell. For example, the following user is using the tcsh shell environment
and has configured the command prompt to show the username and current working
directory:

71

[cgibas@gibas ~]$

Whatever the style of the command prompt, it means that your computer is waiting
for you to tell it to do something. If you type an instruction at the prompt and press
the Enter key, you have given your computer a command. Unix provides a set of
simple navigation commands and commands for searching your filesystem for
particular files and programs. We'll discuss the format of commands more thoroughly
in Chapter 5. In this chapter, we'll introduce you to basic commands for getting
around in Unix.

4.2.1.1 You are here: pwd

pwd stands for "print working directory," and that's exactly what it does. pwd sends
the full pathname of the directory you are currently in, the current working directory,
to standard output—it prints to the screen. You can think of being "in" a directory in
this way: if the directory tree is a map of the filesystem, the current working
directory is the "you are here" pointer on the map.

When you log in to the system, your "you are here" pointer is automatically placed in
your home directory. Your home directory is a unique place. It contains the files you
use almost every time you log into your system, as well as the directories that you
create to store other files. What if you want to find out where your home directory is
in relation to the rest of the system? Typing pwd at the command prompt in your
home directory should give output something like:
/home/jambeck

This means that jambeck 's home directory is a subdirectory of the home directory,
which in turn is a subdirectory of the root (/) directory.

4.2.1.2 Changing directories with cd

Usage: cd pathname

The cd command[2] changes the current working directory. The only argument
commonly used with this command is the pathname of a directory. If cd is used
without an argument, it changes the current working directory to the user's home
directory.

[2] As you'll see when we cover the Unix shell and the command line in Chapter 5, Unix
commands can be issued with or without arguments on the command line. The first word in a
line is always a command. Subsequent words are arguments and can include options, which
modify the command's behavior, and operands, which specify pathnames. Words in the
command line are items separated by whitespace (spaces or tabs).

In order for these "you are here" tools to be helpful, you need to have organized
your filesystem in a sensible way in the first place, so that the name and location of
the directory that you're in gives you information about what kind of material can be
found there. Most of the filesystem of your machine will have been set up by default
when you installed Linux, but the organization of your own directories, where you
store programs and data that you use, is your responsibility.

72

4.2.2 Finding Files and Directories
Unix provides many ways to find files, from simply listing out the contents of a
directory to search programs that look for specified filenames and the locations of
executable programs.

4.2.2.1 Listing files with ls

Usage: ls [-options] pathname

Now that you know where you are, how do you find out what's around you? Simply
typing the Unix list command, ls, at the prompt gives you a listing of all the files and
subdirectories in the current working directory. You can also give a directory name
as an argument to ls. It then prints the names of all files in the named directory.

If you have a directory that contains a lot of files, you can use ls combined with the
wildcard character * (asterisk) to produce a partial listing of files. There are several
ways to use the *. If you have files in a series (such as ch1 to ch14), or files with
common characters (like those ending in .txt), you can use * to specify all of them at
once. When given as the argument in a command, * takes the place of any number
of characters in a filename. For example, let's say you're looking for files called
seq11, seq25, and seq34 in a directory of 400 files. Instead of scrolling through the
list of files by eye, you could find them by typing:
% ls seq*

What if in that same directory you wanted to find all the text files? You know that
text files usually end with .txt, so you can search for them by typing:
% ls *.txt

There are also a variety of command-line options to use with ls. The most useful of
these are:

-a

Lists all the files in a directory, even those preceded by a dot. Filenames
beginning with a dot (.) aren't listed by ls by default and consequently are
referred to as hidden files. Hidden files often contain configuration
instructions for programs, and it's sometimes necessary to examine or modify
them.

-R

Lists subdirectories recursively. The content of the current directory is listed,
and whenever a subdirectory is reached, its contents are also explicitly
included in the listing. This command can create a catalog of files in your
filesystem.

-1

73

Lists exactly one filename per line, a useful option. A single-column listing of
all your source datafiles can quickly be turned into a shell script that executes
an identical operation on each file, using just a few regular-expression tricks.

-F

Includes a code indicating the file type. A / following the filename indicates
that the file is a directory, * indicates that the file is executable, and @
following the filename indicates that the file is a symbolic link.

-s

Lists the size of the file in blocks along with the filename.

-t

Lists files in chronological order of when they were last modified.

-l

Lists files in the long format.

- - color

Uses color to distinguish different file types.

4.2.2.2 Interpreting ls output

ls gives its output in two formats, the short and the long format. The short format is
the default. It includes only the name of each file along with information requested
using the -F or -s options:
#corr.pl# commands.txt hi.c psimg.c
#eva.pl# corr.pl nsmail res.sty
#pitch.txt# corr.pl~ paircount.pl res.sty~
#wish-list.txt# correlation.pl paircount.pl~ resume.tex
Xrootenv.0 correlation.pl~ pj-resume.dvi seq-scratch.txt
a.out detailed-prac.txt pj-resume.log sources.txt

The long format of the ls command output contains a variety of useful information
about file ownership and permissions, file sizes, and the dates and times that files
were last modified:
drwxrwxr-x 4 jambeck weasel 2048 Mar5 18:23 ./
drwxr-xr-x 5 root root 1024 Jan 20 12:13 ../
-rw-r--r-- 1 jambeck weasel 293 Jan 28 17:39
commands.txt
-rw-r--r-- 1 jambeck weasel 1749 Feb 21 12:43 corr.pl
-rw-r--r-- 1 jambeck weasel 559 Feb 23 14:52
correlation.pl
-rwxr-xr-x 1 jambeck weasel 3042 Jan 21 17:05 eva.pl*
drwx------ 2 jambeck weasel 1024 Feb 16 14:44 nsmail/

74

This listing was generated with the command ls -alF. The first 10 characters in the
line give information about file permissions. The first character describes the file
type. You will commonly encounter three types of files: the ordinary file (represented
by -), the directory (d), and the symbolic link (l).

The next nine characters are actually three sets of three bits containing file
permission information. The first three characters following the file type are the file
permissions for the user. The next set are for the user's group, and the final set are
for users outside the group. The character string rwxrwxrwx indicates a file is
readable (r), writable (w), and executable (x) by any user. We talk about how to
change file permissions and file ownership in Section 4.3.3.2.

The next column in the long format file listing tells you how many links a file has;
that is, how many directory listings for that file exist on the filesystem. The same file
can be named in multiple directories. In the section Section 4.2.3, we talk about how
to create links (directory listings) for new and existing files.

The next two columns show the ownership of the file. The owner of the files in the
preceding example is jambeck , a member of the group weasel.

The next three columns show the size of the file in characters, and the date and time
that the file was last modified. The final column shows the name of the file.

4.2.2.3 Finding files with find

Usage: find pathname list -[test] criterion

The find command is one of the most powerful, flexible, and complicated commands
in the standard set of Unix programs. find searches a path or paths for files based on
various tests. There are over 20 different tests that can be used with find; here are a
few of the most useful:

-print

This test is always true and sends the pathname of the current file to
standard output. -print should be the last command specified in a line,
because, as it's always true, it causes every file in the pathname being
searched to be sent to the list if it comes before other tests in a sequence.

-name

This is the test most commonly applied with find and the one that is the most
immediately useful. find -name weasel.txt -print lists to standard output the
full pathnames of all files on the filesystem named weasel.txt. The wildcard
operator * can be used within the filename criterion to find files that match a
given substring. find -name weas* -print finds not only weasel.txt, but
weasel.c and weasel.

-user uname

This test finds all files owned by the specified user.

75

-group gname

This test finds all files owned by the specified group.

-ctime n

This test is true if the current file has been changed n days ago. Changing a
file refers to any change, including a change in permissions, whereas
modification refers only to changes to the internal text of the file. -atime and
-mtime tests, which check the access and modification times of the files, are
also available.

Performing two find tests one after another amounts to applying a logical "and"
between the tests. A -o between tests indicates a logical "or." A slash (/) negates a
command, which means it finds only those files that fail the test.

find can be combined with other commands to selectively archive or remove
particular files from a filesystem. Let's say you want a list of every file you have
modified in your home directory and all subdirectories in the last week:
% find ~ -type f -mtime -7 -print

Changing the type to d shows only new directories; changing the -7 to +7 shows all
files modified more than a week ago. Now let's go back to the original problem and
find executable files. One way to do this with find is to use the following command:
% find / -name progname -type f -exec ls -alF '{' ';'

This example finds every match for progname and executes ls -alF FullPathName for
every match. Any Unix command can be used as the object of -exec. Cleanup of the
/tmp directory, which is usually done automatically by the operating system, can be
done with this command:
find /tmp -type f -mtime +1 -exec rm -rf '{' ';'

This deletes everything that hasn't been modified within the last day. As always, you
need to refer to your manual pages, or manpages, for more details (for more on
manpages, see Chapter 5).

4.2.2.4 Finding an executable file with which

Usage: which progname

The which command searches your current path and reports the full path of the
program that executes if you enter progname at the command prompt. This is useful
if you want to know where a program is located, if, for instance, you want to be sure
you're using the right version of the program. which can't find a program in a
directory that isn't in your path.

4.2.2.5 Finding an executable file with whereis

76

Usage: whereis -[options] progname

The whereis command searches a standard set of directories for executables,
manpages, and source files. Unlike which, whereis isn't dependent on your path, but
it looks for programs only in a limited set of directories, so it doesn't give a definitive
answer about the existence of a program.

4.2.3 Manipulating Files and Directories
Of course, just as with the stacks of papers on your desk, you periodically need to do
some housekeeping on your files and directories to keep everything neat and tidy.
Unix provides commands for moving, copying, and deleting files, as well as creating
and removing directories.

4.2.3.1 Copying files and directories with cp

Usage: cp -[options] source destination

The cp command makes a copy of a source file at a destination. If the destination is
a directory, the source can be multiple files, copies of which are placed in the
destination directory. Frequently used options are -R and -r. Both copy recursively;
that is, they copy the source directory and all its subdirectories to the destination.
The -R option prevents cp from following symbolic links; only the link itself is copied.
The -r option allows cp to follow symbolic links and copy all files it finds. This can
cause problems if the symbolic links happen to form a circular path through the
filesystem.

Normally, new files created by cp get their file ownership and permissions from your
shell settings. However, the POSIX version of cp provides an -a option that attempts
to maintain the original file attributes.

4.2.3.2 Moving and renaming files and directories with mv

Usage: mv source destination

The mv command simply moves or renames source to destination. Files and
directories can both be either source or destination. If both source and destination
are files or both are directories, the result of mv is essentially that the file or
directory is renamed. If the destination is a directory, and the intention is to move
already existing files or directories under that directory in the hierarchy, the
directory must exist before the mv command is given. Otherwise the destination is
created as a regular file, or the operation is treated as a renaming of a directory.
One problem that can occur if mv isn't used carefully is when source represents a file
list, and destination is a preexisting single file. When this happens, each member of
source is renamed to destination and then promptly overwritten, leaving only the last
file of the list intact. At this point, it's time to look for your system administrator and
hope there is a recent backup.

4.2.3.3 Creating new links to files and directories with ln

77

Usage: ln -[options] source destination

The ln command establishes a link between files or directories at different locations
in the directory tree. While creating a link creates the appearance of a new file in the
destination location, no data is actually copied. Instead, what's created is a new
pointer in the filesystem index that allows the source file to be found at more than
one location "on the map."

The most commonly used option, -s, creates a symbolic link (or symlink) to a file or
directory, as in the following example:
% ln -s perl5.005_03 perl

This allows you to type in just the word perl rather than remembering the entire
version nomenclature for the current version of Perl.

Another common use of the ln command is to create a link to a newly compiled
binary executable file in a directory in the system path, e.g., /usr/local/bin. Doing
this allows you to run the program without addressing it by its full pathname.

4.2.3.4 Creating and removing directories with mkdir and rmdir

Usage: mkdir -[options] dirname
Usage: rmdir -[options] dirname

New directories can be created with the mkdir command, which has only two
command-line options.

mkdir -p creates a directory and any intermediate components of the path that are
missing. For instance, if user jambeck decides to create a directory
mustelidae/weasels in his home directory, but the intermediate directory mustelidae
doesn't exist, mkdir -p creates the intermediate directory and its subdirectory
weasels.

mkdir -m mode creates a directory with the specified file-permission mode.

rmdir removes a directory if it's empty. With the -p option, rmdir removes all the
empty directories in a given path. If user jambeck decides to remove the directory
mustelidae/weasels, and directory mustelidae is empty except for directory weasels,
rmdir -p ~/mustelidae/weasels removes both weasels and its parent directory
mustelidae.

4.2.3.5 Removing files with rm

Usage: rm -[options] files

The rm command removes files and directories. Here are its common options:

-f

78

Forces the removal of files without prompting. You still can't remove files you
don't own, but the write permissions on files you do own are ignored. For
example, rm -f a* deletes all files starting with the letter a, but doesn't delete
any subdirectories.

-i

Prompts you with rm: remove filename? Files are removed only if you begin
your answer with a y or Y.

-r

(recursive option) Removes all directories and subdirectories in the list of
files. Symbolic links aren't traversed; only the symlink itself is removed.

-v

(verbose option) Echoes the names of all files/directories that are removed.

While rm is a fairly simple command, there are a few instances in which it can cause
serious problems for the careless user.

The command rm * removes all files in a directory. Unless you have the files set as
read-only or have the interactive flag set, you will delete everything in the directory.
Of course this isn't as bad as using the command rm -r * or rm -rf *, the last of
which overrides any read-only file modes, traverses down through your directories
and deletes everything in your current directory or below.

Occasionally you will find that you create odd files in your directories. For instance,
you might have a file named -myfile where the - is part of the filename. Try deleting
it, and you will get an error message concerning the fact that rm doesn't have a -m
option. Your shell program interprets the -m as a command flag, not part of the
filename. The solution to this problem is trivial but not always instantly apparent:
simply provide a more complete path to the file, such as rm ./-myfile or rm
/home/jambeck/-myfile. Similar solutions are needed if you accidently create a file
with a space in the name.

4.3 Working in a Multiuser Environment
Unix systems are designed to allow multiple users to share system resources and
software, yet at the same time to allow users to selectively protect their work from
each other. To work with others in a multiuser environment, there are a number of
general Unix concepts you need to understand.

4.3.1 Users and Groups
If you use a Unix system, you must be registered. You are identified by a login name
and can log in only by entering the password uniquely associated with your login
name. You have control over an area of the filesystem, which may be as large or
small as system resources allow. You belong to one or more groups and can share

79

files with other members of a group without needing to make the files accessible to
other users. At any given time, only one of a your groups is active, and new files you
create are automatically associated with the active, or primary, group. If you use
group permissions to share files with other users, and you need to change to a
particular group ID, the command newgrp allows you to change your primary group
ID. The id command tells you what your user and primary group IDs are.

Information about your account is stored the /etc/passwd file, a file that provides the
system with information needed when you log in. Your username and user ID
mapping are found here, along with your default groups, full name, home directory
and default shell program. The shell program is described in Chapter 5. The
encrypted version of your password used to be stored here, but on most systems, for
security reasons, the actual password has been removed from the passwd file.
Additional group information is found in the /etc/group file. You can view the
contents of these files with an editor, even though they are system files you normally
can't overwrite.

4.3.2 User Directories
When your system administrator creates a new user account, the process includes
creating an entry in the /etc/passwd file, possibly adding you to a number of groups
in /etc/group, creating a home directory for you somewhere on the system, and then
changing the ownership of that directory so that you own it and any files that are put
into it at the time of creation. Your entry in /etc/passwd needs to match the path to
your home directory, and the user and group that own your home directory. There
should also be a set of files in your home directory that set up your work
environment when you log in and are specific to the Unix shell listed in your passwd
entry. These files are discussed in more detail in Chapter 5.

4.3.3 File Permissions and Statistics
As we discussed in the section on the ls command, each file and directory has an
owner and a group with which it's associated. Each file is created with permissions
that allow or prevent you access to the file dependent on your user ID and group. In
this section we discuss how to view and change file permissions and ownership.

4.3.3.1 Viewing file attributes with stat

Usage: stat -[options] filename

stat lets you view the complete set of attributes of a file or directory, including
permissions, modification times, and ownership. It may be more information than
you need, but it's there if you want it. For example, the command stat image1.rgb
returns:
image1.rgb:
inode 11750927; dev 77; links 1; size 922112
regular; mode is rw-------; uid 12430 (jambeck); gid 280 (weasel)
projid 0 st_fstype: xfs
change time - Sun Mar 14 14:21:50 1999 <921442910>
access time - Sat Mar 13 18:11:21 1999 <921370281>

80

modify time - Sat Mar 13 10:28:39 1999 <921342519>

4.3.3.2 Changing file ownership and permissions with chmod

On most Unix systems, you wouldn't want every file to be readable, writable, and
executable by every user. The chmod command allows you to set the file
permissions, or mode, on a list of files and directories. The recursive option, -R,
causes chmod to descend recursively through a directory tree and change the mode
of the files and directories.

For example, a long directory listing for a directory, a symlink, and a file looks like
this:
drwxr-xr-x 7 jambeck weasel 2048 Feb 10 19:08 image/
lrwxr-xr-x 1 jambeck weasel 10 Mar 14 13:12 image.rgb->
image1.rgb
-rw-r--r-- 1 jambeck weasel 922112 Mar 13 10:28 image1.rgb

The first character in each line indicates whether the entry is a file, directory,
symlink, or one of a number of other special file types found on Unix systems. The
three listed here are by far the most common. The remaining nine characters
describe the mode of the file. The mode is divided into three sets of three characters.
The sets correspond—in the following order—to the user, the group, and other. The
user is the account that owns the directory entry, the group can be any group on the
system, and other is any user that doesn't belong to the set that includes the user
and the group. Within each set, the characters correspond to read (r), write (w),
and execute (x) permissions for that person or group.

In the previous example, to change the mode of the file image1.rgb so that it's
readable only by the user and modified (writable) by no one, you can issue one of
the following commands:
chmod u-w,g-r,o-r image1.rgb
chmod u=r,g=-,o=- image1.rgb
chmod u=r,go=- image1.rgb

Any one of these commands results in image1.rgb 's permissions looking like:
-r-------- 1 jambeck weasel 922112 Mar 13 10:28 image1.rgb

The first two commands should be fairly obvious. You can add or subtract user's,
group's or other's read, write or execute permissions by this mechanism. The mode
parameters are:

[u,g,o]

User, group, other

[+,-,=]

Add, subtract, set

81

[r,w,x]

Read, write, execute

u, g, and o can be grouped or used singly. The same is true for r, w, and x. The
operators +, -, and = describe the action that is to be performed.

4.3.3.3 Changing file and directory ownership with chown and chgrp

Usage: chown -[options] filenames item
Usage: chgrp -[options] filenames

The chown command lets you change the owner (or, in file-permission parlance, the
user) of a file or directory. The operation of the chown command is dependent on the
version of Unix you are running. For example, IRIX allows you to "give" the
ownership to someone else, while this is impossible to do in Linux. We will cite only
examples of the chgrp command, since in Linux, you can be a member of two groups
and get this command to work for you.

chgrp lets you change the group of a file or directory. You must be a member of the
group the file is being changed to, so you have to be a member of more than one
group and understand how to use the newgrp command (which is described later in
this chapter). Assume for a moment that you created image/, a directory containing
files, while you were in your default group. Later, you realize that you want to share
these files with members of another group on the system. So, at first, the
permissions look like this:
drwxr-xr-x 7 jambeck weasel 2048 Feb 10 19:08 image/

Change to the other group using the command newgrp wombat, then type:
chgrp -R wombat image

to make all files in the directory accessible to the wombat group. Finally, you should
change the permissions to make the files writable by the wombat group as well. This
is done with the command:
chmod -R g+w image

Your entry should now appear as follows:
drwxrwxr-x 7 jambeck wombat 2048 Feb 10 19:08 image/

4.3.4 System Administration
Most files that control the configuration of the Unix system on your computer are
writable only by the system administrator. Adding and deleting users, backing up
and restoring files, installing new software in shared directories, configuring the Unix
kernel, and controlling access to various parts of the filesystem are tasks normally
handled by one specially designated user, with the username root. When you're

82

doing day-to-day tasks, you shouldn't be logged in as root, because root has
privileges ordinary users don't, and you can inadvertently mess up your computer
system if you have those privileges. Use the su command from your command line to
assume system-administration privileges temporarily, do only those tasks that need
to be done by the system administrator, and then exit back to your normal user
status.

If you set up a Unix system for yourself, you need to become the system
administrator or superuser and learn to do the various system-administration tasks
necessary to maintain your computer in a secure and useful condition. Fortunately,
there are several informative reference books on Unix system administration
available (several by O'Reilly), and an increasing number of easy-to-use graphical
system-administration tools are included in every Linux distribution.

4.3.5 Conventions for Organizing Files
Unix uses a simple set of designations for the various types of files found on the
system. Normally you can find what you need with info, find, or which, but
sometimes it's necessary to search manually, and you don't want to look in /bin for a
library. These designations are used at the operating-system level, but they are also
often used in project subdirectories or software distributions to separate files:

bin

Executable files, or binaries

lib

Libraries, both runtime or shared, and those needed when compiling

spool

Directories used by the system when communicating with external devices
and machines

tmp

Temporary storage

src

Source code for programs

etc

Configuration information

man

Manual pages, documentation

83

doc

Documentation

X

X or X11R6 refers to X programs, libraries, src, etc.; directories typically have
a fairly complete set of subdirectories

Once you have a basic understanding of how to organize and manage your files and
directories, you're well on your way to understanding how to work in a Unix
environment. In Chapter 5 we complete our lightning Unix tutorial with a discussion
of many of the most commonly used Unix commands. In order to really master the
art of Unix, we strongly recommend consulting one or more of the books in the
Bibliography.

4.3.6 Locating Files in System Directories
While all your own files should be created in your home directory or in other areas
specifically designated for users to share, you need to be aware of the locations of
files in other parts of the system. One benefit of a system environment designed for
multiple users is that many users can share common resources while controlling
access to their own files.

To say there is a standard Unix filesystem is somewhat of an overstatement, but,
like Plato's vision of the perfect chair, we will attempt to imagine one out in the
ether. Since Linux is being developed by thousands of programmers on different
continents and has the benefit of the development of both Berkeley and AT&T's SysV
Unix, along with the POSIX standards, we will use the Linux filesystem as a template
and point out major discrepancies when necessary. The current standard for the
Linux filesystem is described at http://www.pathname.com/fhs/. Here, we present a
brief skeleton of the complete filesystem and point out a few salient features. Most
directories described in this section are configurable only by the system
administrator; however, as a user, you may sometimes need to know where system
files and programs can be found. Figure 4-2 illustrates the major subdirectories,
which are further described in the following list.

Figure 4-2. Unix subdirectories

http://www.pathname.com/fhs/

84

/dev

Contains all the device drivers needed to connect peripherals to the system.
Drivers for SCSI, audio, IDE drives, PPP, mice, and most other devices are
found here. In general there are no user-configurable options here.

/etc

Houses all the configuration files local to your machine. This includes items
such as the system name, Internet address, password file (unless your
machine is part of some larger cluster), filesystem information, and Unix
initialization information.

/home

A common, but not standard, part of Unix. /home is usually a fairly large,
separate partition that houses all user home directories. Having /home on a
separate partition has the advantage of allowing it to be shared in a cluster
environment, and it also makes it difficult for users to completely fill an
important system partition and cause it to lock up.

/lost+found

A system directory that is a repository for files and directories that have
somehow been misplaced by the system. Typically, users can't cd into this
directory. Files usually end up in the lost+found because of a system crash or
a disk problem. At times it's possible that your system administrator can
recover files that appear to be lost simply by moving them from lost+found
and renaming them. There's a separate lost+found for each partition on the
system.

85

/mnt

While not found on all systems, this is the typical place to mount any
partitions not described by the standard Unix filesystem description. Under
Linux, this is where you will find a mounted CD-ROM or floppy drive.

/nfs

Often used as the top-level directory for any mount points for partitions that
are mounted from remote machines.

/opt

A relatively new addition to the Unix filesystem. This is where optional,
usually commercial, packages are installed. On many systems you will find
higher-end, optimizing compilers installed here.

/root

The home directory for root, i.e., for the system administrator when she is
logged in as root.

/sbin, /bin, and /lib

Since the machine may need to start the boot process without the /usr
partition present, any programs that are using it prior to mounting the /usr
partition must reside on the main or root partition. The contents of the /sbin
directory, for instance, are a subset of the /usr/sbin directory. Labeling
directories sbin indicates that only system-level commands are present and
that normal users probably won't need them, and therefore don't need to
include these directories in their path. The /lib directory is a small subset of
system libraries that are needed by programs in /bin and /sbin. Current Unix
programs use shared libraries, which means that many programs can use
functions from the same library, and so the library needs to be loaded into
memory only once. What this means for practical purposes is that programs
don't take as much memory as they would if each program included all the
library routines, and the programs don't actually run if the correct library has
been deleted or hasn't been mounted yet.

/tmp and /var/tmp

Typically configured to be readable/writable/executable by all users. Many
standard programs, such as vi, write temporary files to one of these
directories while they are running. Normally the system cleans out these
directories automatically on a regular basis or when the machine is rebooted.
This is a good place to write temporary files, but you can't assume that the
system will wait for you to erase them.

/usr

86

The repository for the majority of programs, compilers, libraries, and
documentation for the Unix filesystem. The current recommendation for most
Unix systems is that the system should be able to mount /usr as a separate,
read-only partition. In a workstation-cluster environment, this means that a
server can export a /usr partition, and all the workstations in that cluster will
share the programs. This makes the system administrator's job easier and
provides users with a uniform set of machines.

/usr/local

The typical directory in which to install programs and documentation so that
they aren't overwritten by the operating system. You will often find programs
such as Perl and various others that have been downloaded from the Internet
installed in this location.

/var

The directory used by all system programs that write output to the disk. All
system logs, spools, and temporary data are written here. This includes
logging information such as that written during the boot process, by the
mailer, by the login program, and by all other system processes. Incoming
and outgoing mail is stored in the /var/spool directory, as are files being sent
to printers. Information needed for cron, batch, and at jobs is also found
here.

Chapter 5. Working on a Unix System
Unix has a wealth of functions, and you'll want to be aware of a particular subset of
them before you start running programs and collecting data. In Chapter 4, we talked
about how to organize and manage your files in Unix, as well as how to move around
the filesystem. In this chapter we take you on a whirlwind tour through the common
Unix commands you'll need to know to work efficiently. We discuss the Unix shell
itself, issuing commands in Unix, viewing, editing, and extracting information from
your files, shell scripts, and working in a multiuser environment.

Once you've learned to use some of these Unix commands, you'll find that they are
astonishingly powerful and flexible, allowing you to modify files in ways that are
impossible, or at least not easy, with a conventional word-processing program. For
example, with a single command you can find all the instances of a pattern in every
file under your home directory. A few simple tricks can create a script that will
process every file in your source data directory identically. Another simple script can
update a customized local copy of a database every night while you're sleeping.

5.1 The Unix Shell
When you log into a Unix system or open a new window in your system's window
manager interface, the system automatically starts a program called a shell for you.
The shell program interprets the commands you enter and provides you with a
working environment and an interface to the operating system. It's possible to work
in Unix without the shell using graphical file manager tools, but you'll find that many

87

shell commands are useful for data processing and analysis. Entire books devoted to
the various shells are available, and the manpages for some of the common shells
exceed 100 pages when printed. We provide you only with a brief introduction to the
commonly used shells, to get you started with as few hurdles as possible.

5.1.1 What Flavors of Shell Are There?
The shell program you use affects the feel of your command-line interface. Some of
the features that can be built into the shell program include a simple arithmetic
interpreter that lets you use the command line as a calculator; command aliasing,
which lets you refer to standard Unix commands with other more convenient words;
filename completion, which lets you type only the number of characters necessary to
distinguish a file from other files in the directory, rather than typing the full filename;
command editing and command history, which let you scroll back through the
commands you've recently issued and edit them on the command line; spelling
correction; and help functions for the shell program.

There are a number of common shell programs on Unix systems. You are
automatically assigned a shell when your system administrator sets up your account.
On Linux systems, the default shell program is the bash (Bourne Again) shell.
However, you may prefer to use a shell other than bash. The two main classes of
shell programs are shells derived from the Bourne shell, sh, and shells derived from
the C shell csh. Bourne-type shells include sh, bash, ksh (the Korn shell), and zsh
(the Z shell). C-type shells include csh and tcsh.

We tend to prefer C shells, for historical reasons. When we started working in Unix,
the C shell was the best thing going, and the tcsh program has expanded the original
csh into a powerful shell. tcsh implements most of the desirable shell features,
including history, command aliasing, filename completion, command-line editing,
arithmetic and functions, job control, and spelling correction. tcsh is also one of the
most user-configurable shells. Therefore, we'll discuss the behavior of Unix
commands from a C-shell perspective, as if you were using the tcsh program, which
we use on our machines.

Your default shell will be listed as the last item in your entry in the /etc/passwd file.
If you aren't certain which shell you are currently using, you can find out by typing:
% finger your-user-name

For user jambeck, this command shows the following information:
Login name: jambeck In real life: Per Jambeck
Directory: /home/jambeck Shell: /bin/tcsh

This tells us that he is using tcsh as his default shell. For practical reasons, we will
limit our discussions and most references to csh and tcsh. It must also be noted that
many system processes (e.g., batch, at, and cron) use the Bourne shell by default,
which makes it necessary to learn at least a minimal subset of its command
language. On most systems there are commands to change your default shell as set
in the passwd file. The chsh (change shell) command allows you to change your
default login shell, if you're working on a Linux system.

88

5.2 Issuing Commands on a Unix System
There 's a standard format for sending an instruction to Unix. In this book, we'll refer
to commands and to the command line. Each of Unix's many native commands has a
tangible existence as an executable program, and to issue the command is to tell
Unix to execute that program. In this section and those that follow, we move fairly
quickly through concepts and commands. While we can give you a brief overview of
the Unix features we find most useful, this book isn't designed to replace a
comprehensive Unix reference book. If you're new to Unix, we strongly recommend
that you review the basics of Unix with the help of books such as Learning the Unix
Operating System, Running Linux, or Unix for the Impatient. We've provided a list of
recommended reading in the Bibliography.

5.2.1 The Command-Line Format
The command line consists of the command itself, optional arguments that modify
how the command works, and operands such as files upon which the command
operates. For example, the chsh (change shell) command, which we just discussed
briefly, has several possible options. The first is the -s option, which must be
followed by the name of a shell program as its argument. The second is the -l option,
which needs no argument, and which lists the shells that are available on your
system. The operand for the chsh command is the username of the user whose shell
is being changed. So, to change your default shell program, you might first type:
% chsh -l

which gives you a list of the shell programs available on the system:
/bin/bash
/bin/sh
/bin/ash
/bin/bsh
/bin/bash2
/bin/tcsh
/bin/csh
/bin/ksh
/bin/zsh

Then, to actually change your shell to tcsh, you can type:
% chsh -s /bin/tcsh yourusername

Options can simply be single-letter codes, or they can have their own arguments.
Options that take no arguments can be given as a group, while each option that
takes an argument must be specified separately. Each option group and separate
option must be preceded by a hyphen (-). The last option in a group, or separate
options, can be followed by the option argument. The operands follow the final
option in the list.

Many Unix commands have options that, frankly, you'll never use. And we're not
going to talk about them. But there are ways of finding out more.

89

5.2.2 Unix Information Commands
Unix has its own built-in reference manual, which is quite comprehensive and
informative, and which will give you the correct information about the commands
and options available on the particular system you're using.

The man command is one of the most useful Unix commands; it allows you to view
Unix manual pages. While some Unix systems have implemented a web browser-like
interface to the Unix manpages, you can't always count on this option being
available. The man command is available on all types of Unix systems.

Usage: man name

where name can be a Unix command, such as grep, or a system file, such as the
password file /etc/passwd.

If you're not sure of the command you're looking for, you can sometimes find the
right information using man's slightly smarter cousin, apropos. The apropos
command locates commands by keyword lookup.

Usage: apropos name

For instance, if you're concerned about disk usage on your system, you can enter
apropos usage. The output of this command on our PC running Red Hat Linux is:
du (1) - summarize disk usage
getrlimit, getrusage, setrlimit (2) - get/set resource limits and
usage
quota (1) - display disk usage and limits
quotacheck (8) - scan a file system for disk usages

apropos doesn't always produce such brief and informative output. Entering a smart
combination of keywords is (as always with such searches) the key to getting the
output you want. If you want a predictable listing of Unix commands, it's probably
best to pick up a comprehensive Unix book.

What should you do if you find the following text in a manpage?
This documentation is no longer being maintained and may be inaccurate
or
incomplete. The Texinfo documentation is now the authoritative source.

The GNU[1] set of Unix tools are adopting a documentation system, called texinfo,
that is different from the traditional man system. If you come across this message,
you should be able to read the up-to-date documentation on the program by typing
in the command info progname. For instance, info info gives you a complete set of
documentation on the use of info and even provides instructions for creating your
own info documentation when you start writing your own programs.

[1] GNU tools are distributed and maintained by the GNU Project at the Free Software
Foundation. GNU stands for "GNU's Not Unix" and refers to a complete, Unix-like operating
system that's built and maintained by the GNU Project (http://www.Gnu.org).

90

5.2.3 Standard Input and Output
By default, many Unix commands read from standard input and send their output to
standard output. Standard input and output are file descriptors associated with your
terminal. A program reading from standard input will simply hang out and wait for
you to type something on your keyboard and press the Enter key. A program writing
to standard output spews its output to your terminal, sometimes far faster than you
can read it.

Some Unix commands read a hyphen (-) surrounded by whitespace on either side as
"data from standard input." This construct can then be used in place of a filename in
the command line. Absence of an output filename is sufficient to cause the program
to write to standard output.

5.2.4 Redirection of Command Input and Output
The standard input and output descriptors are useful because you can redirect both
standard input and output, associating them with filenames, with no effects on the
functioning of the program. Here are the most common redirection constructs used
by the C shell:

<

This redirector preceding a filename associates that filename with standard
input, i.e., the contents of the file are presented to the program as if they are
standard input.

>

This redirector associates a filename with standard output, so that the
filename is created on execution of the command, or whatever is in an
existing file of that name is overwritten by the output of the command.

>>

This redirector associates a filename with standard output. It differs from > in
that the output of the command is appended to the end of the existing file.

The cat command reads the contents of a file and writes them to standard output. If
you want to use the cat command to combine the contents of three files into one
new file, you can use a redirector like this:
% cat file1 file2 file3 > file4

This construct with cat would be useful if, for example, you'd just downloaded a
bunch of individual sequence files from the NCBI web site and want to collect them
into one large file that can be read by another program. (This is an example of
something that seems like it should be simple, but is actually time-consuming and
annoying to do with a standard PC word-processing program. Unix provides a neat
solution that doesn't even require you to open any files).

91

You can also use redirectors to direct the contents of a file into a program at run-
time, as standard input (useful if you are running a program that prompts you for
input from the keyboard) or to capture output from a program that is normally
written to standard output:
program < inputfile
program > outputfile

For example, let's say you've just finished an extensive BLAST search, and you want
to send the results to your colleague. You can use the redirector < ("less than"), to
scoop the file huge_blast_report out of your directory and mail it directly to your
colleague:
% mail colleague@university.edu < huge_blast_report

If you want to increase the chances of your colleague opening the message, you can
add a subject header to the mail message using the mail option -s. The command
reads:
% mail -s "surprise!" colleague@university.edu < huge_blast_report

The reverse operation, sending the results of standard output (or text that's
displayed on your screen) to a file, can be accomplished using > ("greater than").
Perhaps your colleague wants to write a quick reminder to herself to reply to your
mail. She could do it using the cat command to take input from the keyboard and
redirect it to a file, like this:
% cat > reminder_to_self
Ha! Send fifteen BLAST reports to colleague on Monday.
^D
%

Ctrl-D (^D) signals that you have finished entering text. Your colleague now has a
file called reminder_to_self in her current working directory.

5.2.5 Operators
Operators are similar to redirectors in that they are ways of directing standard input
and output. However, they direct input and output to and from other commands
rather than to filenames.

The most commonly used operator is the pipe (|). The pipe directs standard output
of one command into standard input for the next command. This allows you to chain
together several different filtering commands or programs without creating input or
output files each time.

You can use the cat command to direct the contents of a file into a program that
reads information from standard input:
% cat inputfile | program

mailto:colleague@university.edu
mailto:colleague@university.edu

92

This command construct does the same thing as the example we showed earlier
(program < inputfile). Both cause the output of the cat command to act as input for
program. If you want to do a lot of runs of the same program using slightly different
input, you can create multiple input files and then write a script that cat s each of
those input files in turn and pipes their contents to program.

Pipes can carry out a complete set of file-processing options without writing to disk.
For instance, imagine that you have a datafile consisting of multiple tables
concatenated together. The first table in the file takes up the first 67 lines, the
second table takes up the next 100 lines, and the rest of the file is taken up by a
third table.[2] You want the information that's contained in the second column of the
middle table, which stretches from characters 30 -39 in the row. Using filters and
pipes, you can construct the following command to crop out the data you need:

[2] This isn't an imaginary format at all. It's pretty close to the format of the output file from a
calculation that we do frequently: computing the pKa values of individual amino acids in a
protein.

% head -167 protein1.pka | tail -100 | cut -c30-39 > protein1.pka.data

In this example, head sends the top 167 lines of a specified file or files (in this case
protein1.pka) to standard output; tail takes the last 100 lines of the output of head;
and cut takes the correct column of characters out of the results of head and tail and
then stores it in protein1.pka.data.

5.2.6 Wildcard Characters
A useful construct Unix shells recognize is the presence of wildcard characters in
filenames. The shell locates matches for any wildcards before passing filenames on
to the program. The two most commonly used wildcards are the asterisk (*) and the
question mark (?). * means "any sequence of zero or more characters, except for
the / character." ? means "any single character." Thus, "every file in this directory"
can be denoted by a lone *, which is a useful shortcut.

The shell recognizes other wildcards as well. The construct [cset] refers to any
characters in the specified set. If you want to move all files beginning with letters a
through m to a new directory, you can structure the command as mv [a -m]*
../newdir. If you want to move all files beginning with a number to a new directory,
enter mv [0 -9]* ../newdir.

5.2.7 Running X Commands
On Unix systems running the X Window System, there are many commands available
that initiate programs with functions that aren't command line-based. Once these
programs, which can include anything from graphics viewers to complicated scientific
applications, are called from the command line, they use the X Window System to
open their own windows, which generally contain a complete, independent graphical
user interface.

5.3 Viewing and Editing Files

93

You're probably accustomed to the idea of using a program to open a file. If your
first introduction to computers has been sometime in the last 15 years, you're
probably used to simply clicking on a file icon, which is automatically recognized by
the right piece of software, which opens the file.

In Unix, commands are designed to operate on files that are sensibly readable and
printable as text whenever possible. Thus text files can be opened by a wide variety
of commands that allow a great deal of flexibility in file manipulation. The file reading
and processing commands have such functions as sorting data based on the value of
a particular substring in each line of the file, cutting a particular column out of a file,
pasting columns of data together side by side, checking to see what the differences
between two files are, and searching for instances of a pattern in a file or group of
files. Often, these simple commands are all you need to extract a desired subset of
the data in a file and prepare it for analysis.

Unix has many ways to view and edit the contents of files. There are viewers for text
and programs that allow you to examine the contents of binary files, as well as full-
featured editors for modifying plain-text files.

5.3.1 Viewing and Combining Files with cat
Usage: cat -[options] files

cat dumps the contents of a file onto the screen. If your file is short, or if you've
successfully completed a speed-reading course, this utility works well. If you need to
see what's on each page of a file, though, cat is less useful, since the contents of the
file scroll by without pausing.

Instead of viewing text, cat is most useful for combining (or concat enating) files. For
instance, if you have a series of files of program output named meercat1.txt,
meercat2.txt, and meercat3.txt, and you want to combine them into a single file,
you can type:
% cat meercat1.txt meercat2.txt meercat3.txt > big-meercat.txt

This command appends the contents of meercat3.txt to the end of meercat2.txt, the
contents of meercat2.txt to the end of meercat1.txt, and so on, combining them into
one big file named big-meercat.txt. If you've thought to number the outputs
sequentially (as we have with the meercats), and want them in that order in the file,
you can just type:
% cat meercat*.txt > big-meercat.txt

and it will have the same effect. Wildcard characters such as * use a strict
alphabetical order: if they exist, files meercat10.txt and meercat11.txt come before
meercat2.txt.

cat can also append files to the end of an existing file. For example, if your program
generates another output file you need to attach to the end of the collection, the
command:

94

% cat meercat10.txt >> big-meercat.txt

does just that. If you use > instead of >> in this situation, instead of being added at
the end of the file, the new file meercat.txt overwrites the entire contents of big-
meercat.txt.

Incidentally, if you want a command that's the reverse of cat to print the lines of a
file in backward order, you're in luck: the command is called tac. Sadly, the
command acta, for printing a file inside out, hasn't yet been implemented.

5.3.2 more: A Step in the Right Direction
Usage: more -[options] [+linenumber] [+/pattern] filename

more is a pager, which in Unix means a program that lets you view a file one page at
a time. Suppose you have a file containing BLAST output named blast-first.txt.
Typing:
% more blast-first.txt

shows you the first page of the file blast-first.txt, and steps forward one page every
time you press the space bar. To leave more, hit the q key; to view other more
commands while within more, enter h.

more is smart about moving around files. If you know where you want to go in the
file, you can specify the line number (using the +linenumber option). If, on the other
hand, you want to start at the first occurrence of a certain word or pattern, use the
+/pattern option. When viewing a file in more, if you press the / key and then type a
pattern to search for, more jumps to the next occurrence of that pattern in the file
and repeats searches for each subsequent occurrence of that pattern every time you
press / followed by the Enter key.

Here are some other useful options for more :

-r

Shows normally unprintable control characters as well as normal text

-s

Squeezes multiple empty lines into a single one

You can redirect the output of a program that generates more than a screen's worth
of text to more, allowing you to page through the output one screen at a time. Let's
say you want to know who is logged into your Unix system. If enough users are
logged in, the output scrolls off the screen. By piping who to mor e :
% who | more

95

you can scroll through the output line-by-line using the Return key or screen-by-
screen using the space bar.

more 's most significant shortcoming is that some versions can't move backward
through a file. less is a utility that remedies this simple problem.

5.3.3 less: The Gold Standard
There is a superior pager command, less. Most importantly, less rectifies more 's
biggest flaw: it lets you page backward as well as forward in a file. less also doesn't
load a file into memory all at once, which makes it less likely that your computer will
grind to a halt if you view a huge file with it. Finally, it also handles binary files more
gracefully, displaying readable text as characters and representing unreadable
control characters in the form ^X. less uses the same options as more, but it also
takes additional options. Be sure to check info less to see which ones your local
version takes. And finally, while it hardly bears mentioning, why is it called less ?
Because less is more. Sigh.

5.3.4 Editing Files with vi and vim
Usage: vim filename

Because it's a text-based operating system that has historically been used for
software development and computation, Unix did not traditionally provide the kind of
full-featured, "what you see is what you get" text editing that exists on personal
computers, although now such editors are available. In fact, WYSIWYG text editors
are of limited utility for programmers because they often introduce invisible markup
characters into documents.

It's worth learning to use the plain-text editors that are provided for Unix. They have
a fairly steep learning curve, but they are the right tools for the job if you're writing
programs or looking at plain-text data. If you download sequence data from a web
server and open and work with it in a plain-text editor, the file you write out should
be readable by a sequence-analysis program. If you opened the same file and
worked with it in a WYSIWYG editor, then wrote it out in the file format used by that
editor, it would be unreadable by other programs.

The vi editor is a standard feature of most Unix systems. It's a full-screen editor; it
allows you to see as many lines of the file that you are editing as will fit into the
terminal screen or window in which you run it. The cursor can be moved through the
file using keyed instructions, but it can't be moved with the mouse. The bottom line
on the screen is called the status line. Error messages from vi appear in the status
line.

In Section 5.6, we discuss the use of regular expressions for searching and
replacement as a feature of the plain-text editor vi. The ability to use vi with the
regular-expression language makes vi a powerful tool for file manipulation.

A few nice features have been added to vi in vim (vi improved). It's worth asking
your system administrator to install vim if it's not already on your system, if only for

96

the multiple undo feature that it introduces. We can't cover all the features of vim
here, but we will present a few commands that will get you up and running.[3]

[3] See the Bibliography for pointers to complete references on vi.

vim has three modes ; in each, input from the keyboard is interpreted differently:

Command

This is the main mode; you are automatically in command mode when you
start working. Keystrokes are interpreted as vim's short commands, most of
which consist of one or two letters. You can always return to the command
mode by hitting the Escape key once (or sometimes twice).

Input

This mode is reached by issuing any command that requires input.

Status line

This mode is for issuing longer, more complex commands. To reach status
line mode, simply type a semicolon (;) in command mode. A semicolon
appears at the left side of the status line, and anything you type appears in
the status line. When you finish typing your command and hit the Enter key,
the command is executed, and you return to command mode.

Here are some of the most useful vim command-mode commands:

h, j, k, l

Moves the cursor around in your file character-by-character or line-by-line.
It's sort of like a pre-joystick video game: "h" moves you to the left, "l" to the
right, "j" moves you down a line, and "k" up a line. On most systems, the
arrow keys on your keyboard will also work to move you around within vim.

w, b

Moves the cursor forward ("w") or back ("b") by one word in the text. Words
are delimited by whitespace.

), (

Moves the cursor forward ")" or back "(" by one sentence in the text.
Sentences are recognized as sequences of words terminated by an end-of-
sentence character (. ? !).

a, A, i, I, o, O

Initiates the insertion of text. "a" and "A" insert text after the cursor and at
the end of the current line, respectively. "i" and "I" insert text before the

97

cursor and at the beginning of the current line. "o" and "O" open a blank line
below or above the current line, respectively, and begin inserting text on the
new line.

x, X

Deletes the text under the cursor or before the cursor, respectively. Preceded
by an integer number, they delete that number of characters after or
preceding the cursor.

s, S

Substitutes for the character under the cursor or for the current line,
respectively, by deleting the character either under the cursor or the line and
initiating insertion of text in place of the deleted character. Preceded by an
integer number, "s" replaces that number of characters with the new text,
and "S" replaces the specified number of lines.

Here are some of the most useful vim status line mode commands:

:wq

Saves changes to the file and quits the editing session. ":w" can be used by
itself or with the name of the file to write to. ":q!" exits the session without
saving changes.

r]

Followed by a filename, inserts the entire text of the named file.

:g/pattern/s//replacement/g

Searches for and replaces pattern with replacement throughout the buffer. If
the trailing "g" is left off, only the first occurrence of the pattern in any line is
replaced.

:number

Moves the cursor to the specified line number.

5.3.5 The GNU Emacs Editor
vim is a fairly flexible editor, and you can certainly learn to make it do any text-
editing task that you need to do. However, there are other options for text editing on
Unix systems. The best of these is probably the Emacs editor. Emacs is an editing
program made available by the Free Software Foundation. It contains not only a
text-editing facility with special modes for TEX and LaTEX documents, programs in
various programming languages, and outlines, but also a file manager, mail and
news readers, and access to the online documentation browser info. Whole books
have been written on Emacs (see the Bibliography) so we won't go into it here

98

except to recommend that, if you're working on a Unix system, learning to use
Emacs is one of the better uses of your learning-curve time.

5.3.6 Viewing Binary Files with strings
Usage: strings -[options] filenames

In addition to the text files we've discussed up to now, there are also binary files that
can't be read as text. They are almost always the output of a program or the
executable form of a program itself (as opposed to the source code). Binary files and
program executables aren't human-readable because they are in machine language.
Because of this language gap, we'll unflinchingly make the prediction that, 9 times
out of 10, it isn't worth the effort needed to read binaries. You'll have more luck
taking another route, like talking to the person whose program created the file in the
first place. Unfortunately, many programs today, such as commercial hidden Markov
model software or data mining programs that directly write their internal
representation of data structures to disk, use binary files to store proprietary data
structures. For that tenth time, then, we present some tips on how to extract
information from binaries without going crazy.

Your first step should be to use either the less command described earlier or the
strings command. If any portions of the file are in plain text, they will be readable in
less. The strings command cuts out any readable text characters in the file and
prints them to the screen. For example, if you have an undocumented binary file
named badger and want to see if it contains any clues as to what it does, try typing:
% strings -n 3 badger | less

(The -n option tells strings how many readable text characters in a row constitute a
string. The default setting for -n is four). Piping the output to less will let you page
through it if it's longer than one screen. If the output looks like:
ATCGTACTGATCGTCGATCGTCGATCATGCA
CGTAGCAGTCGATCATCATCGTACTAGCTAG
ATGCCTGAGCTATACACACTAGTCACGATGC

you might guess that badger contains some kind of binary encoding of data including
a nucleotide sequence or a (not good) multiple sequence alignment.

5.3.7 od and Binary Data
Usage: od -[options] filenames

Sometimes, it may be necessary to do more than just identify a binary file. In these
cases, the od program may provide a first step in understanding the file's contents.
Before looking at od itself, let's take a quick detour through the ways in which binary
information is represented in a moderately more human-friendly form.

Rather than using conventional decimal (base-10) notation, binary data is usually
represented using a base that is a power of two: either octal (base-8) or hexidecimal
(base-16) digits. Octal numbers are usually preceded by a 0. For example, the

99

decimal number 25 corresponds to octal 031.[4] Hexidecimal digits, on the other
hand, are usually preceded by a 0x and use the letters A through F to represent the
decimal numbers 10 through 15. The decimal number 25 is 0x19 in hexidecimal.

[4] Giving rise to the old joke, "Why do programmers confuse Christmas and Halloween?
Because OCT 31 is DEC 25."

If you want to delve into the heart of the binary file and see what's going on, you
can use the od command to perform an octal dump (or hex dump) and see if your
binary file is readily interpretable. Typing:
% od -c badger | less

creates an octal dump of badger you can step through a page at a time. It should
look something like this:
0000000 \0 \0 \0 001 \0 \0 \0 006 R T D C Y G \0
0000020 \0 \0 006 R T D C Y G \0 \0 \0 \a \0 \0 \0
0000040 001 1 \0 \0 \0 003 A R G \0 \0 \0 001 \0 \0 \0
0000060 002 C A \0 \0 \0 002 B Z 270 R ? 200 \0 \0 @

o d 's primary options are:

-c

Prints out text characters corresponding to bytes

-x

Produces a hex dump of the file

-o

Produces an octal dump (the default setting)

-d

Produces a dump of unsigned decimal numbers

Unless you're a serious programmer, you're not likely to have to read binaries.
However, on the off chance that you do, we hope these standard tools will help you
start to get your questions answered.

5.4 Transformations and Filters
Filters are programs that take input data and transform it to produce output. They
can accomplish tasksk —such as extracting parts of files—that word processing and
spreadsheet applications can't. A transformation involves a simple manipulation of
the data format, or selection of specified lines or fields from the data. In this section,
we discuss some of the more commonly used filters that are part of Unix. These

100

filters can read from standard input and writing to standard output, allowing you to
combine them and produce fairly complex transformations.[5]

[5] If you need to transform data in a way that isn't allowed by the standard Unix filters, see
Chapter 12, in which we discuss the Perl scripting language. Perl is a very complete and
sophisticated language that allows you to produce an infinite variety of specialized filters.

5.4.1 Extracting the Beginning of a File with head
Usage: head - number files

Say you have a program that spits out a lengthy datafile that has several different
tables of information concatenated together. Leaving aside the question of why
anyone would write a program that creates such difficult output, there are
commands that allow you to work with such data, and you need to know them. head
is one such command.

By default, head sends the top 10 lines of the specified file or files to standard
output. Checking the head of a file this way is an easy way to see if there's
something in the file without opening it using an editor or doing a full cat of the file.

With the -number flag, head becomes a tool for selecting a specified number of
records from the top of a file. Combinations of head and tail commands can extract
any set of lines from a file provided that you know their location in the file.

5.4.2 Extracting the End of a File with tail
Usage: tail [-f] -number files

The tail command outputs the last 10 lines of a file by default, or the last num lines
of the file if specified. With the -f option, tail gives constantly updated output of the
last few lines in the file. This provides a way to monitor what is being added to a text
output file as it's written by another program.

5.4.3 Splitting Files with split and csplit
Usage: split -[options] filename
Usage: csplit -[options] file criteria

The split command allows you to break up an existing file into smaller files of a
specified size. Each file produced is uniquely named with a suffix (aa, ab...az, ba,
etc.). The options to split are:

-l lines

Splits the file into subfiles of length lines

-a length

Uses length letters to form suffixes

101

If you have a file called big-meercat.txt and you want to split it into subfiles of length
100 lines using single-letter suffixes and writing the files out to subfiles named
meercat.*, the command form of the split command is:
% split -l 100 -a 1 big-meercat.txt meercat.

csplit also splits files into subfiles, but is somewhat more flexible than split, because
it allows the use of criteria other than number of lines or bytes for splitting. Here are
csplit 's options:

-f prefix

Uses the specified file prefix to form subfile names

-n length

Uses suffixes of a specified length to form subfile names; subfile suffixes are
made up of numbers rather than letters

Split criteria are formed in two ways: either a regular expression is supplied as the
criterion, possibly modified by an offset, or a number of lines can be specified.

A biological sequence database in FASTA format may contain many records of the
form:
>identifying header information

PROTEINORNUCLEICACIDSEQUENCEDATA

The csplit command can split such a database into individual sequence files using the
command:
% csplit -f dbrecord. -n 6 fastadbfile /^>/

The file is split into numbered subfiles, each containing a single sequence.

5.4.4 Separating File Components with cut
Usage: cut -c list filenames
or cut -f list -d delim -s file

The cut command outputs selected parts of each line of an input file. A line in a file is
simply any stretch of characters that ends with a specific delimiter; a delimiter is a
special nontext character an operating system or program recognizes. Lines in files
are terminated with an EOL (end-of-line) character; files themselves are terminated
with an EOF (end-of-file) character. These characters are usually invisible to you
when you're working with the file, but they are important in how a file is treated by
programs that read it.

For example, say you have a file called sequence_data that contains the following:

102

ATC TAC
ATG CCC
GAT TCC

Here's how to use cut to output the first character of each line in the file:
% cut -c 1 sequence_data
A
A
G

And here's how to output the first line of fields 1 and 2:
% cut -f 1-2 sequence_data
AAT TAC

Portions of each defined line can be selected by character number in the line with the
-c option, or by field with the -f option. Fields are stretches of characters within a
line that are defined by delimiters. The most obvious delimiter for use within the text
of a file is simply the space character, but other characters can be used as well.
Fields are different from columns, which are strictly defined by numbering each
character in the input line.

The list argument specifies the range of each line, whether in characters or in fields,
to be selected.

The list is in the form of single numbers or of two numbers separated by a -
character. Multiple single columns or ranges can be selected by separating them with
commas. Either the first or the last number can be omitted, indicating that the cut
starts at the beginning of the line or that it ends at the end of the line. Characters
and fields in each line are numbered starting at 1.

When the -f option is used, indicating that cut is to count fields rather than
characters, a delimiter other than the default tab character can be specified with the
-d option. The -s option causes cut to ignore lines that don't contain the specified
delimiter. This option can be useful, for example, for ignoring header lines in a table.

5.4.5 Combining Files with paste
Usage: paste -[options] files

The paste command allows you to combine fields from several files into one larger
file. Unlike the join command, which does a database-style merging of two files,
paste is a purely mechanical combination of files. Lines are combined based solely on
their line number in each file: i.e., the first line of file1 is pasted next to the first line
of file2, regardless of the content of the lines. Pasted data is separated by a tab
character unless another delimiter is specified with the -d option. With the -s option
and only one input filename, paste joins all the lines in the input file into one long
line.

103

paste can prepare datafiles to be read by data-analysis applications. If you have a
group of files in the same format and you have used other filter commands to
remove corresponding information from each of them, you can prepare one input file
that allows you to plot the corresponding information from each of the files without
reading them independently. In a previous example, we used piped commands to
extract a column from a table in a complicated output file:
% head -167 protein1.pka | tail -100 | cut -c30-39 > protein1.pka.data

If you have eight similar output files for proteins 1-8, you can process them all in the
same way and then paste the results that you're interested in comparing into one big
datafile:
% paste protein*.pka.data > allproteins.pka.data

Each individual file in this example might look something like this:
3.8
12.0
10.8
4.4
4.0
6.3
7.9

Each number represents the computed pKa value of one amino acid in a protein. If
you have several sets of results that can be meaningfully combined into a table,
paste creates a simple tab-delimited table that looks like this:
3.8 3.2 3.6
12.0 12.9 12.5
10.8 10.9 11.0
4.4 4.2 4.5
4.0 3.9 4.2
6.3 6.5 6.2
7.9 7.5 8.0

It's up to you, however, to understand how your data can be meaningfully combined
into a table and to use the paste command correctly to get the result you want.

5.4.6 Merging Datafiles with join
Usage: join -[options] file1, file2

join merges two files based on the contents of a specified join field, where lines from
the two files having the same value in the join field are assumed to correspond. Files
are assumed to have a tabular format consisting of fields and a consistent field
separator, and are assumed to be sorted in increasing order of their join fields.

Command-line options for join include:

-1 fieldnum

104

Uses the specified field number as the join field in file 1

-2 fieldnum

Uses the specified field as the join field in file 2

-t character

Uses the specified character as the delimiter throughout the join operation

-e string

Replaces empty output fields with the specified string

-a filenum

Produces output for each unpairable line in the specified file; can be specified
for both input files; fields belonging to the other output file are empty

-v filenum

Produces output only for unpairable lines in the specified file

-o list

Constructs the output lines from the list of specified fields, where the format
of the field list is filenum.fieldnum; multiple items in the list can be separated
by commas or whitespace

join is quite useful for constructing data tables from multiple files, and a sequence of
join operations can construct a complicated file. In a simple example, there are three
files:
mustelidae.color:
badger black
ermine white
long-tailed tan
otter brown
stoat tan

mustelidae.prey:
ermine mouse
badger mole
stoat vole
otter fish
long-tailed mouse

mustelidae.habitat:
river otter
snowfield ermine
prairie long-tailed
forest badger

105

plains stoat

First, combine mustelidae.color and mustelidae.prey. The field both have in common
is the name of the animal, which is the first field in each file. mustelidae.prey isn't
yet sorted. The form of the join command needed is:
% sort mustelidae.prey | join mustelidae.color - > outfile

which produces the following output:
badger black mole
ermine white mouse
long-tailed tan mouse
otter brown fish
stoat tan vole

Now combine the resulting file with mustelidae.habitat. If you want the resulting
output to be in the form habitat animal prey color, use the command construct:
% sort -k2 mustelidae.habitat | join -1 2 -2 1 -o 1.1,2.1,2.3,2.2 -
outfile

This operates on the standard input and the output file from the previous step to
produce the output:
forest badger mole black
snowfield ermine mouse white
prairie long-tailed mouse tan
river otter fish brown
plains stoat vole tan

5.4.7 Sorting Files with sort
Usage: sort -[general options] -o[outfile] -[key interpretation options] -
t[char] -k[keydef]...[filenames]

The sort command can sort a single file, sort a group of files and simultaneously
merge them into a single file, or check a file for sortedness. This function has many
applications in data processing. Each line in the file is treated as a single field by
default, but keys can also be defined by the user on the command line.

The main options for sort are:

-c

Tests a file for sortedness based on the user-selected options

-m

Merges several input files

106

-u

Displays only one instance of lines that compare as equal

-o outfile

Sends the output to a file instead of sending it to standard output

-t char

Uses the specified character to delimit fields

Options that determine how keys are interpreted can be used as global options, but
they can also be used as flags on a particular key. The key interpretation options for
sort are:

-b

Ignores leading or trailing whitespace in a sort key.

-r

Reverses the sort order for a particular key.

-d

Uses "dictionary order" in making comparisons; i.e., characters other than
letters, digits, and whitespace are ignored.

-f

Reclassifies lowercase letters as uppercase for the purpose of making
comparisons. Normally, L and l would be separated from each other due to
being in uppercase and lowercase character sets; with the -f flag, all L's end
up together, whether capitalized or not.

5.4.7.1 Specifying sort keys

Key definitions are arguments of the -k option. The form of a key definition is
position1,position2. Each is a numerical value that specifies where within the line the
key starts and ends. Positions can have the form field.character, where field specifies
the field position in the input line, and character specifies the position of the starting
character of the key within its individual field. If the key is flagged with one of the
key interpretation options, the form of the key is field.character[flags]. If the key
interpretation option isn't applied to the whole sort, but merely to one key, then it's
appended to the key definition without a preceding hyphen.

5.5 File Statistics and Comparisons

107

It's frequently useful to find out if two separate files are the same and, if not, where
they have differences. For instance, if you have compiled a program on your local
machine, and test cases are provided, you should run your copy of the program on
the test cases and compare the output to the canonical output provided by the
makers of the program. If you want to check that the backup copy of a file and the
current version of the file are the same, file-comparison tools are very useful. Unix
provides tools that allow you to do this without laboriously searching through the
files by hand.

5.5.1 Comparing Files with cmp and diff
Usage: cmp -[options] file1 file2
Usage: diff -[options] file1 file2

Let's say you have two lists and, while they look similar, you can't tell by eye if they
are exactly the same list. This can happen if you get a list of gene names back from
database searches performed using two subtly different queries and want to know if
they are equivalent. In order to compare them rigorously (and save your eyes in the
process), you can try the semicomplementary commands cmp and diff. In short, cmp
tells you whether two files are identical, and diff prints any lines that are different.

cmp is fairly simple-minded. Typing:
% cmp enolase1.list enolase2.list

produces no output if the two files are identical. Otherwise, cmp returns a message
that the files differ and includes the character and line at which the first difference
occurs.

diff is most useful for comparing different versions of a file to find exactly where the
files differ. Before looking at diff ' s rather obtuse output, it's worth a moment to see
how to decrypt it. Without options, diff responds with a list of differences in the form
of the changes required to make file2 from file1:

x,y d i

Lines x through y in file1 are missing in file2 after line i (i.e., they've been
deleted from file2).

i a x,y

Lines x through y in file2 are missing in file1 after line i (i.e., they've been
added to file2).

i,j c x,y

Lines i through j in file1 have been changed to lines x through y in file2.

108

In practice, the output looks like this (where enolase1.txt and enolase2.txt are lists
of names of putative enolases produced by two database searches performed at
different times):
% diff enolase1.list enolase2.list
1a2
> ENO_MESCR
5a7
> ENOA_MOUSE

Here are two of the more immediately useful options diff uses:

-b

Ignores differences in whitespace between lines

-B

Ignores inserted or deleted blank lines between files

The info pages on diff and its variants are especially helpful. If you use this utility
extensively, we strongly recommend you give them a look.

5.5.2 Counting Words with wc
Usage: wc -[options] filename (s)

wc is a simple and useful utility for counting things in text files. Given a text file, wc
counts the number of lines, words, and bytes (characters) that it contains. The
default setting for wc is to count all three entities, so that typing it at the command
prompt returns a line that looks like:
% wc meercat1.txt

27 98 559 meercat1.txt

This output tells you that there are 27 lines, 98 words, and 559 bytes in
meercat1.txt. If you pass multiple files to wc, it returns counts both for individual
files and for all of them combined. For example, if you run wc on the three meercat
files:
% wc meercat1.txt meercat2.txt meercat3.txt

(or, to save time, wc meercat*.txt, being appropriately careful using the wildcard),
the output looks like:

41 130 905 meercat1.txt
50 124 869 meercat2.txt
10 19 156 meercat3.txt

101 273 1930 total

These are the options for wc :

109

-c

Counts only bytes (characters)

-w

Counts only words

-l

Counts only lines

- -help

Prints a usage message

- -version

Prints the version of wc being used

Unix tools can often be used in combination to collect information you need. For
instance, say you have a list of 1,000 files that need to be processed, and the output
files are all saved together in the same directory. Instead of trying to list the
contents of that directory using ls, you can use ls -1 dirname | wc to find how many
output files have been created so far.

5.6 The Language of Regular Expressions
The pattern-matching language known as regular expressions allows you to search
for and extract matches and to replace patterns of characters in files (given the right
program). Regular expressions are used in the vi and Emacs text-editing programs.
Since much of the data that biologists work with contains patterns, one of the first
skills you need to learn is how to match patterns and extract them from files.

Regular expressions also are understood by the Perl language interpreter. Knowing
how to use regular expressions along with the basic commands of Perl gives you a
powerful set of data-processing tools. We'll cover the basics of regular expressions
here, and return to them again in Chapter 12.

If you've ever used a wildcard character in a search, you've used a regular
expression. Regular expressions are patterns of text to be matched. There are also
special characters that can be used in regular expressions to stand for variable
patterns, which means you can search for partial or inexact matches. Regular
expressions can consist of any combination of explicit text and special characters.

The special characters recognized in basic regular expressions are:

\

110

The backslash acts as an escape character for a special character that follows
it. If part of the pattern you are searching for is a dot, you give the regular
expression chars\.txt to find the pattern chars.txt.

.

The dot matches any single character.

*

The behavior of the asterisk in regular expressions is different from its
behavior as a shell wildcard. If preceded by a character, it matches zero or
more occurrences of that character. If preceded by a character class
description, it matches zero or more characters from that set. If preceded by
a dot, it matches zero or more arbitrary characters, which is equivalent to its
behavior in the shell.

^

The caret at the beginning of a regular expression matches the beginning of a
line. Otherwise, it matches itself.

$

The dollar sign at the end of a regular expression matches the end of a line.
Otherwise, it matches itself.

[charset]

A group of characters enclosed in square brackets matches any single
character within the brackets. [badger] matches any of (a, b, d, e, g, r).
Within the set, only -, caret,], and [are special. All other characters,
including the general special characters, match themselves. A range of
characters in the form [c1-c2] can also be given; e.g., [0 -9] or [A-Z].

5.6.1 Searching for Patterns with grep
Usage: grep -[options] 'pattern' filenames

grep allows you to search for patterns (in the form of regular expressions) in a file or
a group of files. GNU grep (the standard on Linux) searches for one of three kinds of
patterns, depending on which of the following functions is selected:

-G

Standard grep : searches for a regular expression (this is the default)

-E

Extended grep : searches for an extended regular expression

111

-F

Fast grep : rapidly searches for a fixed string (a pattern made of normal
characters, as opposed to regular expressions)

Note that the -E and -F options can be explicitly selected by calling egrep or fgrep on
some systems. If no files are specified to be searched, grep searches the standard
input for the pattern, allowing the output of another program to be redirected to
grep if you are looking for a pattern in the output.

As a simple example, consider the following commands:
% grep -c '>' SP-caspases-A.fasta SP-caspases-B.fasta
% grep '>' SP-caspases-A.fasta SP-caspases-B.fasta

These both search through a file of FASTA-formatted sequences (whose header lines,
you will remember, begin with the > symbol). The first command returns the
number of sequences in each file, while the second returns a list of the sequence
headers. Be sure to enclose the > in quotes, though. Otherwise, as one of us once
found out the hard way, the command is interpreted as a request for grep to search
the standard input for no pattern and then redirect the resulting empty string to the
files listed, overwriting whatever was already there.

grep takes dozens of options. Here are some of the more useful ones:

-c

Prints only a count of matching lines, rather than printing the matching lines
themselves

-i

Ignores uppercase/lowercase distinctions in both file and pattern

-n

Prints lines and line numbers for each occurrence of a pattern match

-l

Prints filenames containing matches to pattern, but not matching lines

-h

Prints matching lines but not filenames (the opposite of -l)

-v

Prints only those lines that don't contain a match with pattern

112

-q

(quiet mode) Stops listing matches after the first occurrence

In protein structure files, protein sequence information is stored as a sequence of
three-letter codes, rather than in the more compact single-letter code format. It's
sometimes necessary to extract sequence information from protein structure files. In
real life, you can do this with a simple Perl program and then go on to translate the
sequence into single-letter code. But you can also extract the sequence with two
simple Unix filter commands.

The first step is to find the SEQRES records in the PDB file. This is done using the
grep command:
% grep SEQRES pdbfile > seqres

This gives you a file called seqres containing records that look like this:
SEQRES 1 357 GLU VAL LEU ILE THR GLY LEU ARG THR ARG ALA VAL ASN 2MNR
106
SEQRES 2 357 VAL PRO LEU ALA TYR PRO VAL HIS THR ALA VAL GLY THR 2MNR
107
SEQRES 3 357 VAL GLY THR ALA PRO LEU VAL LEU ILE ASP LEU ALA THR 2MNR
108

Not all the characters in each record belong to the amino-acid sequence. Next, you
need to extract the sequences from the records. This can be done using the cut
command:
% cut -c20-70 seqres > seqs

The output of this command, in the file seqs, looks like this:
GLU VAL LEU ILE THR GLY LEU ARG THR ARG ALA VAL ASN
VAL PRO LEU ALA TYR PRO VAL HIS THR ALA VAL GLY THR
VAL GLY THR ALA PRO LEU VAL LEU ILE ASP LEU ALA THR

If you don't want to create the intermediate file, you can pipe the commands
together into one command line:
% grep SEQRES pdbfile | cut -c20-70 | paste -s > seqs.

Addition of the paste -s command joins the individual lines in the file into one long
line.

5.7 Unix Shell Scripts
The various Unix shells also provide a mechanism for writing multistep scripts that
let you automate your work. Scripts are labeled as such because they contain,
verbatim, the sequence of commands you want to "say" to the shell, just as the
script for a play contains the sequence of lines the author wants the actors to say.

113

Shell scripts—even the simplest ones—are still applications, and they behave
accordingly. Let's say you want to start a series of calculations that will take a while,
and then go home to eat dinner. By default, the shell will wait until one command is
finished to execute the next command, so if the second command acts upon the
output of the first, it won't start prematurely. The important thing is that you don't
have to be there to type the second command.

Here's a relatively simple example. Assume you have just downloaded the entire set
of GenBank DNA sequence files. You want the information in the files, but you need
it to be in a different format so that a program you've downloaded can process it.
You're going to use the program gb2fasta to convert the files from GenBank to
FASTA format. (This script assumes you've downloaded the GenBank files to your
current working directory.) Then you want to process each file using the BLAST
formatdb program. To make the script more flexible, you can write it so that it takes
an optional file list on the command line to specify which files to process. The script
might look like this:
#!/usr/bin/csh
foreach file ($*)
echo $file
gb2fasta $file > $file.na
formatdb -t "$file" -i $file.na -p F
end

After creating the file, you need to make it executable using the chmod command.
For instance, if the filename of the script is blastprep, give the command:
% chmod a+x blastprep

The first line of the script tells the operating system which shell program to use, the
shell is invoked, and the job is run. You can invoke your command immediately in
the following way:
./blastprep gbest*.seq

In order to run the new script without giving its full path, you need to run the rehash
command before typing this command. rehash is a C-shell command that updates
the list of all executable files in your path.

In the previous example, all the GenBank EST files are automatically parsed and
prepared for use with BLAST. The programs gb2fasta and formatdb run just as they
do on the command line, but you don't have to wait for each command to complete.
The script takes your command-line argument—in this case gbest*.seq, which is a
list of filenames—and sequentially fills the variable $file with each value. It then
loops through the lines between the "foreach" and "end" lines. The echo command
simply sends the value of $file to standard output, so you can see in your terminal
window how the job is progressing. The gb2fasta program normally prints to
standard output, so you need to redirect the output to a specific filename. On the
other hand, formatdb processes the input files and generates new files using an
internal naming convention, so no output file is needed in the script.

5.8 Communicating with Other Computers

114

As we'll see in Chapter 6, the ability to plug into other computers and networks
across the world allows you to read and download an amazing amount of
information, as well as share data with your colleagues. In fact, your work as a
bioinformatician depends on having access to public databases and other repositories
of biological data. In this section, we look at how your computer communicates with
other machines and the tools it uses to do so.

5.8.1 The Web
The easiest way to communicate with other computers is via the Web. Most
distributions of Linux include web browser software—usually Netscape—which, if you
select it from the list of installation options, is automatically installed for you. Setting
up a web browser on a Linux system is the same as setting up a browser on other
computers; you need to set the browser's preferences and tell it where the correct
utilities are located to open different kinds of file attachments.

You may want to maintain a web page on your machine, and in order to do that, you
need to install web server software. Again, most Linux distributions allow you to
install the Apache web server software as one of your installation options. If you
choose to install the Apache web server, you can publish a simple web site by placing
the appropriate HTML files in the /home/httpd/html directory.

5.8.2 IP Addresses and Hostnames
In the world of the Internet, computers recognize each other by their Internet
Protocol (IP) addresses. Computers that are constantly connected to the Internet
have permanently allocated IP addresses and hostnames, while computers that only
connect to the Internet occasionally may have dynamically allocated IP addresses, or
no IP address at all, depending on the protocol they use to connect.

IP addresses consist of four numbers separated by dots (e.g., 128.174.55.33). These
are interpreted as directions to the host (a computer that communicates with other
computers) by network software. Computers also have hostnames, such as
gibas.biotech.vt.edu. Name servers are dedicated machines that maintain
information about the relationships among IP addresses and hostnames.

5.8.3 telnet
Usage: telnet full.hostname

The telnet command opens a shell on a remote Unix machine; the workstation on
which the command is issued becomes a terminal for that machine. To telnet to
another Unix machine, you must have a login on that machine. Once you're logged in
to the remote host, the shell works just as if you were working directly on the
remote machine.[6]

[6] If you are logged in as root, there are certain tasks you can't do from a remote terminal.

A "login:" prompt should appear, followed by a "password:" prompt after your ID is
entered.

115

5.8.4 ftp
Usage: ftp full.host.name.edu

The File Transfer Protocol (ftp) is a method for transferring files from one computer
to another. You may be familiar with Fetch, Interarchy, or other PC-based FTP
clients; Unix ftp is conceptually similar to these programs (and many of them have
analogs that run under Linux, if you like their graphical user interfaces). When you
use ftp to connect to another host, you will find yourself in an operating environment
that is unique to ftp. Unix commands don't always work in the ftp environment,
although the commands ls and cd have similar functions.

Again, a "login:" prompt appears, followed by a "password:" prompt. If you are
accessing an anonymous FTP server (a common way to distribute software), the
standard username is anonymous, and your email address is the password. Once in
the FTP environment, the most important commands to know are:

help

Prints out the list of ftp commands. help command prints out information on a
specific command.

ls

Lists the contents of the directory on the remote host.

cd

Changes the working directory on the remote host.

lcd

Changes the working directory on the local host.

get, mget

get copies a single file from the remote host to the local host. mget copies
multiple files.

put, mput

put copies a single file from the local host to the remote host. mput copies
multiple files.

binary, ascii

Changes the file-transfer mode to binary or ASCII. You should choose binary
when you are downloading binary executables, images, and other encoded file
formats.

116

prompt

Toggles the interactive mode that asks you to confirm every transfer when
you transfer multiple files.

5.8.5 Displaying from a Remote Terminal
Sometimes you need to run an X program on another computer and have it display
on your terminal. This is relatively simple to do. First, you need to set your own
terminal to allow remote displays from other hosts. This is done using the xhost
command:
% xhost +

A confirmation that access is allowed from other hosts is then printed to standard
output.

Next, you need to change the display environment on the remote machine. This is
done with the setenv command:
% setenv DISPLAY yourmachine.yoursubnet.wherever.edu:0

Not all X applications running on a remote server can use your terminal for display,
generally because the remote machine and your machine don't have the same
graphics capabilities. For instance, programs running on a remote Silicon Graphics
machine can't display on your local Linux workstation, because Silicon Graphics uses
proprietary graphics libraries that aren't currently available to Linux users. However,
even if both machines are compatible, bandwidth limitations can make running large
X programs over the network extremely slow.

5.8.6 Communication and File Sharing
One of the biggest inconveniences for Linux users in a primarily Mac/PC environment
is the sharing of files generated by PC productivity software with other users. While
it's not our purpose to teach you to use these packages here, we can mention a few
options that will help you handle communication with non-Unix users.

Fortunately, there are relatively low-cost software products available for Linux that
make it possible to work with common file types, such as Microsoft Word and rich-
text format (RTF) documents, PowerPoint presentations, and Excel spreadsheets.
Sun's StarOffice (http://www.staroffice.com) and Applix's Applixware
(http://www.vistasource.com) are two possibilities; at the time of this writing,
StarOffice seemed to do the cleanest job of converting files generated by Microsoft
Word and other commonly used programs. Adding one of these packages to your
Linux system will add most of the basic PC functions (word processing, electronic
presentations, etc.) that may be vital to your work.

Most kinds of graphics files are easily handled and converted on Linux systems. One
powerful tool for manipulating graphics files is called the GIMP (Gnu Image
Manipulation Program, http://www.gimp.org). The GIMP is commonly included in
Linux distributions, so be sure to select it as part of your installation if you will be

http://www.gimp.org

117

doing anything with graphics files. The GIMP is analogous to Adobe Photoshop
program and shares most of the same functionality.

5.8.7 Media Compatibility
Linux users can read and write files on Microsoft-formatted floppy disks and Zip
disks. A floppy or Zip disk is treated as an additional filesystem on your computer.
The most basic way to access this filesystem is to mount it using the mount
command. To do this, you need to know the device ID of the disk you are trying to
mount and establish a mount point for the new filesystem.

Determining the device IDs of the various drives is usually straightforward. One way
is to open the file /var/log/dmesg. This file contains the system information that is
printed to standard output when the machine is booted. Scan through the file and
find the drive information, which should look like this:
hdc: SAMSUNG SC-140B, ATAPI CDROM drive
hdd: IOMEGA ZIP 250 ATAPI, ATAPI FLOPPY drive
hdc: ATAPI 40X CD-ROM drive, 128KB Cache
Floppy drive(s): fd0 is 1.44M

This section of the file contains information about IDE devices. On this particular
machine, the IDE devices include a CD-ROM drive, a Zip drive, and a floppy drive.
The three-letter codes hdc, hdd, and fd0 are the device IDs.

The next section of the file contains information about SCSI devices. On this
particular machine, the main hard disk is a SCSI drive, and its ID is sda. sda1, sda2,
etc., are the individual IDs of the partitions on the hard drive:
Detected scsi disk sda at scsi0, channel 0, id 0, lun 0 SCSI device
sda: hdwr sector= 512 bytes. Sectors= 35566499 [17366 MB] [17.4 GB]
sda: sda1 sda2 sda3 sda4 < sda5 sda6 sda7 sda8 sda9 >

5.8.8 Accessing Devices as Unix Filesystems
Once you know the device IDs, mounting these new filesystems is simple. If you're
the root user of your own machine, the command is:
mount -t [filesystem type] devicefile mount point

For example, to mount a PC-formatted floppy disk at /mnt/floppy, the command is:
% mount -t msdos /dev/fd0 /mnt/floppy

You can find a listing of allowed file types in the manpages for mount.

As a shortcut, you can modify your /etc/fstab file to contain the following lines:
/dev/fd0 /mnt/floppy vfat noauto,owner 0 0
/dev/hdd4 /mnt/zip vfat noauto,owner 0 0

118

On this system, the Zip drive is located at /dev/hdd. All PC-formatted Zip disks use
partition number 4, and the device file for that partition is /dev/hdd4. The noauto
flag means that these disks aren't mounted automatically at boot time. Once these
lines are added to /etc/fstab, the devices can be mounted with the shortened
command mount devicefilename.

Once the Zip or floppy is mounted as a partition, the files on that disk can be treated
like any other file on the system.

Getting some of these devices working isn't as straightforward as we'd like it to be.
For further help, you can search the Web for the Linux how-to pages for the
particular device you're using.

5.8.9 Accessing Devices as DOS Disks
If you install the utility package mtools and its graphical frontend mfm, you can run
mfm and move files to Zip or floppy disks, using a graphical interface similar to that
on a PC. However, if you use this method to access devices, you can't run Unix
commands on the files stored on your media until you move them onto the local hard
disk.

By default, processes to access media may be run only by the root user. It's possible
to configure your system so that other users can write to floppy and Zip drives.
However, this creates a security hole in your system. You have to decide for yourself
whether the benefits of easy disk access outweigh any potential risks.

5.9 Playing Nicely with Others in a Shared Environment
Unix environments traditionally have been multiuser environments. While the
availability of new flavors of Unix for personal computers might change this on your
computer at home, at work you will probably use a shared, networked Unix system
at least some of the time. And even on a personal Unix system, you need to be
aware of problems that can arise when you create an excessive load on your system,
and of how background processes can interfere with your ability to run interactive
processes.

Because the Unix operating system can interact with more than one user at a time,
from terminals attached directly to the system or over a network, there can be many
processes executing on your system. Some processes will be yours, and others will
belong to users who may be working across the room from you or hundreds of miles
away. To be a good citizen in a Unix environment, you need to share the system's
resources. While administrators of large public systems make it nearly impossible for
you to be a bad citizen by implementing quotas for space usage and queueing
systems for process management, it isn't likely that all systems you use will be so
tightly managed. On shared systems in which good faith is all that's keeping users
from stepping on each other's toes, it's wise to manage your own processes
responsibly. Otherwise someone's going to come gunning for you, and it won't be
pretty.

5.9.1 Processes and Process Management

119

A Unix system carries out many different operations at the same time. Each of these
operations, or processes, has a unique process ID that allows the user or the
administrator to interact with that process directly.

There are a minimum number of processes that run on a system regardless of
whether you actively initiate them. Each shell program, whether idle or active, has a
process ID attached to it. Several system (or root) processes, sometimes known as
daemons, are constantly active on the system. These processes often lie in wait for
you to initiate some activity they handle: for instance, printing files, sending email,
or initiating a telnet session.

Above and beyond this minimal system activity level are any processes you initiate
by typing a command or running a program. The Unix kernel manages these
processes, allocating whatever resources are available to the processes according to
their needs.

Each process uses a percentage of the processing capacity of the system's CPU or
CPUs. It also uses a percentage of the system's memory. When the processes
running on a machine require more than 100% of the CPU's capacity to execute,
each individual process will execute more slowly. While Unix does an extremely good
job of juggling hundreds of processes that run at the same time without having the
machine roll over and die, eventually you will see a situation where the load on the
machine increases to the point that the machine becomes useless. The operating
system uses many techniques to prevent this, such as limiting the absolute number
of processes that can be started and swapping idle jobs out of memory. Even on a
single processor system, it's possible to have multiple processes running
concurrently as long as there is enough space for both jobs to remain in memory. At
the point at which the CPU has to constantly wait for data to get loaded from the
swap space on the hard drive, you will see a great drop in efficiency. This can be
monitored using the top command, which is described in Section 5.9.1.3. Many
machines are more limited by lack of memory than they are by a slow CPU, and it's
often now more cost-effective to put money into additional RAM than to buy the
latest, greatest, and fastest CPU.

5.9.1.1 Checking the load average

Usage: w

The w command is available on most Unix systems. This command can show you
which other users are logged into the system and what they are doing. It also shows
the current load average on the system.

The standard output of the w command looks like this:
2:55pm up 37 days, 4:50, 4 users, load average: 1.00, 1.02, 2.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
jambeck tty1 22Jan99 37days 3:55m 0.06s startx
jambeck ttyp0 :0.0 Wed 5pm 1:34m 0.22s 0.22s -csh
jambeck ttyp3 :0.0 21Feb99 3:47 9.05s 8.51s telnet weasel
god ttyp2 around 2:52pm 0.00s 0.55s 0.09s create world

120

The first line of the output is the header. It shows the time of day, how long the
machine has been up, how many users are logged in, and what the load average on
the system has been for the last 1 minute, 5 minutes, and 15 minutes. The load
average represents the fractional processor use on the system. If you have a single
processor system and a load average of 1, the system is being used at optimal
capacity. A four-processor system with a load average of 2 is being used at only half
of its capacity. If you log in to a system and it's already being used at or beyond its
capacity, it's not polite to add other processes that will start running right away. The
batch or at commands can set up a process to start when resources become
available.

The information displayed for each user is the username, the tty name, the remote
host from which the user is logged in, the login time, the idle time, the JCPU and
PCPU times, and what the user is doing.

5.9.1.2 Listing processes with ps

Usage: ps [options]

ps produces a snapshot of what the processor is doing at the moment you issue the
command. Depending on what your computer is doing at the time, typing ps at the
prompt should give output along the lines of:

PID TTY TIME CMD
36758 ttyq10 0:02 tcsh
43472 ttyq10 0:00 ps
42948 ttyq10 4:24 xemacs-20
42967 ttyq10 1:21 fermats-last-theorem-solver

Most of ps 's options modify the types of processes on which ps reports and the way
in which it reports them. Here are some of the more useful options:

a

Lists every command running on the computer, including those of other users

l

Produces a long listing of processes (process memory size, user ID, etc.)

f

Lists processes in a "tree" form, showing related processes

Notice that you don't need to preceed the option with a dash. There are actually a
couple of dozen options for ps ; check info ps to see which options are supported by
your local installation.

5.9.1.3 top

Usage: top -[options]

121

The top command provides real-time monitoring of processor activity. It lists
processes on the system, sorted by CPU usage, memory usage, or runtime. The top
screen looks like this:
4:34pm up 37 days, 6:29, 4 users, load average: 0.25, 0.07, 0.02
42 processes: 39 sleeping, 3 running, 0 zombie, 0 stopped
CPU states: 42.9% user, 6.4% system, 0.0% nice, 51.0% idle
Mem: 39092K av, 38332K used, 760K free, 13568K shrd, 212K buff
Swap: 33228K av, 20236K used, 12992K free 8008K cached

PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
516 jambeck 15 0 4820 3884 1544 R 0 30.4 9.9 4:23 emacs-

fgyell
415 root 9 0 10256 9340 888 R 0 15.5 23.8 161:41

/usr/X11R6/b
10756 cgibas 5 0 716 716 556 R 0 2.3 1.8 0:01 top-ci

The header is similar to the output of w but more detailed. It gives a breakdown of
CPU and memory usage in addition to uptime and load averages. The display can be
changed to show a variety of fields. The default configuration of top is set in the
user's .toprc file or in a systemwide /etc/toprc file.

Here are the top options:

-d

Updates with a frequency of delay

-q

Refreshes without any delay, running at the highest possible priority

-s

Runs in secure mode, with its most potentially dangerous commands disabled

-c

Prints the full command line instead of just the command you're running

-i

Ignores all processes except those currently running

While top is running, certain interactive commands can be entered, unless they are
disabled from the command line. The command i toggles the display between
showing all processes and showing just the processes currently running. k kills a
process. It prompts you for the process ID of the process to kill and the signal to
send to it. Signal 15 is a normal kill; signal 9 is a swift and deadly kill that can't be
ignored by the process. r changes the running priority of a process, implementing
the renice command discussed in Section 5.9.1.5. It prompts you for the process ID
and the new priority value for the job.

122

5.9.1.4 Signaling processes with kill

Usage: kill [-s signal | -p] [-a] PID

The kill command lets you terminate a process abnormally from the command line.
While kill can actually send various types of signals to a process, in practice it's most
often used in the form kill PID or, if that fails to kill the process, kill -9 PID.

On most systems, kill -l lists the available types of signals that can be sent to a
process. It's sometimes useful to know that jobs can be stopped and restarted with
kill -s STOP and kill -s CONT. [7]

[7] Discussion of the other signals can be found in any of the comprehensive Unix references
listed in the Bibliography.

A PID is usually just the numerical process ID, which you can find with the ps or top
commands. It can also be a process name, in which case a group of similarly named
processes can be addressed. Another useful form of PID is -n process group ID,
which allows the kill command to address all the processes in a group
simultaneously.

5.9.1.5 Setting process priorities with nice and renice

Usage: nice -n [val command arg]
Usage: renice -n [incr] [-g|-p|-u] id

Processes initiated on a Unix system run at the maximum allowed priority unless you
tell them to do otherwise. The nice and renice commands allow the owner of a
process, or the superuser, to lower the priority of a job.

If limited computing resources are shared among many users and computers are
used simultaneously for computation and interactive work, it's polite to run
background jobs (jobs that run on the machine without any interactive interface)
with a low priority. Otherwise, interactive jobs such as text editing or graphical-
display programs run extremely slowly while background jobs hog the available
resources. Jobs running at a low priority are slowed only if higher-priority processes
are running. When the load on the system is low, background jobs with low priority
expand to use all the available resources.

You can initiate a command at a low priority using nice. n is the priority value. On
most systems, this is set to 10 by default and can range from 1-19, or 0-20. The
larger the number, the lower the priority of the job, of course.

The renice command allows you to reset the priority of a process that's already
running. incr is a value to be added to the current priority. Thus, if you have a
background process running at normal priority (priority 1) and you want to lower its
priority (by increasing the priority number), you can enter renice -n 18 to increase
the priority value to 19. You can also input a negative number to put the job at high
priority, but unless you are root, you are limited to raising its priority to 1. The
renice options, -p, -g, and -u, cause renice to interpret id as a process ID, a process
group ID, or a user number, respectively.

123

5.9.2 Scheduling Recurring Activities with cron
The cron daemon, crond, is a standard Unix process that performs recurring jobs for
the system and individual users. System activities such as cleanup of the /tmp
directory and system backups are typically functions controlled by the cron daemon.
Normal users can also submit their own jobs to cron, assuming they have permission
to run cron jobs. Details about cron permissions are found in the crontab manpage.
Since the at and batch commands, which are discussed later, are also controlled by
cron, most systems are configured to allow users to use cron by default.

5.9.2.1 Submitting jobs to cron using crontab

Usage: crontab -[options] file

Submission of jobs to cron is done using the crontab command. crontab -l > file
places the current contents of your crontab into a file so you can edit the list. crontab
file sends the newly edited file back and initializes it for use by cron. crontab -r
deletes your current crontab.

cron processes the contents of all crontab 's and then initiates jobs as scheduled. A
crontab entry as produced by crontab -l looks like:
Format of lines:
#min hour daymo month daywk cmd

50 2 * * * /home/jambeck/runme

This entry runs the program runme at 2:50 A.M. every day. An asterisk in any field
means "perform this function every time." In this entry, all output to either STDOUT
or STDERR is mailed to user jambeck 's email account on the machine where the
cron job ran.

5.9.2.2 Using cron to schedule a recurrent database search

What if your group performs DNA sequencing on a daily basis, and you want to use
the sequence-alignment program BLAST to compare your sequences automatically
against a nonredundant protein database? Consider this crontab entry:
01 4 * * * find /data/seq/ -name "*.seq" -type f -mtime -1 -exec
/usr/bin/csh /usr/local/bin/blastall -p blastx -d nr -i '{' ";'

This automatically runs at 4:01 A.M. and checks for all sequences that have been
modified or added to the database in the last 24 hours. It then runs the BLASTX
program to search your copy of the nonredundant protein sequence database for
matches to your new sequences and mails you the results. This example assumes
you have all the necessary environment variables set up correctly so that BLAST can
find the necessary scoring matrixes and databases. It also uses a default parameter
set, which may need to be modified to get useful results. Once you get it configured
correctly, all you have to do is browse through your email while you drink your
morning coffee.

5.9.2.3 Scheduling processes with batch and at

124

Usage: at -[options] time
Usage: batch -[options]

The batch and at commands are standard Unix functions and are commonly available
on most systems. Jobs are submitted to queues, and the queues are processed by
the cron daemon; jobs are governed by the same restrictions as crontab
submissions. The batch command assigns priorities to jobs running on the system.
Using batch allows a system administrator to sort jobs by priority—high to low—
thereby allowing more important jobs to run first. Unless the system has a
mechanism to kill interactive jobs that exceed a specified time limit, this use of the
batch queue relies on users to work in a cooperative manner. On larger systems the
function of batch is usually replaced by more complicated queuing systems. You
need to get information from your system administrator about which batch and at
queues are available.

at allows you to submit a job to run at some specified time. batch sequentially runs
jobs whenever the machine load drops below a specified level and the number of
concurrent batch jobs has not been exceeded. Once you initiate at or batch, all
command-line entries are considered part of the job until you terminate the
submission with a Ctrl-D keystroke. Like cron, any STDOUT and STDERR generated
by the job are mailed to you, so you at least get notified of error conditions. Here are
the common options:

-q queuename

Specifies the queue. By default, at uses the "a" queue; batch uses the "b"
queue.

-l

Causes at to list the jobs current in the specified queue.

-d jobid

Tells at to delete a specified job.

-f filename

Instructs at to run the job from a file rather than standard input.

-m

Instructs batch and at to send mail upon completion, even when no output is
generated.

time

Time can be now, teatime, 7:00 P.M., 7:00 P.M. tomorrow, etc. Check the
manpage for more details.

125

As an example, let's say that you want your boss to think you were slaving away at
3:00 A.M. Simply send her mail at 3:07 A.M. Even if you don't plan on being awake,
it's no problem. At the at command prompt, just type:
> at 3:07am
Mail -s "big breakthrough" boss@wherever < /home/jambeck/news
<Ctrl-d>

5.9.3 Monitoring Space Usage and File Sizes
As fast as available disk space on a system expands, users seem to be able to
expand their files to fill it. Software takes up more space; output files become larger
and more complex; more layers of analysis can be created. Since the infinitely large
data-storage medium has yet to be invented, you can still run up against disk-space
limitations. So, you need to be able to monitor how much space you are using and,
as we'll discuss in Section 5.9.4, how to make data archives and store them on
appropriate media.

5.9.3.1 Checking disk usage with du

Usage: du -[options] filenames

du reports the number of disk blocks used by the specified file or files. Without a
filename, it reports disk usage for all files in the current working directory. The -s
flag causes du to report values only for the named file, rather than for the file and its
subdirectories.

5.9.3.2 Checking for free disk space with df

Usage: df

df reports free diskspace for local and networked filesystems on your computer. df is
a useful way to find out which filesystems are mounted on your computer. If a
connection to a filesystem you would expect to find is down, that filesystem doesn't
appear in the df output. The df output looks like this:
Filesystem Type blocks use avail %use Mounted on
/dev/root xfs 17506496 14113592 3392904 81 /
/dev/xlv/xlv_raid_home xfs 62783488 39506328 23277160 63 /scratch-
res1
/dev/dsk/dks0d5s0 xfs 17259688 15000528 2259160 87 /mnt/root-
6.4
/dev/dsk/dks12d1s7 xfs 17711872 11773568 5938304 67 /ip410
/mnt/local/jmd/balder: NFS server balder not responding
zeus:/hamr nfs 2205816 703280 1502536 32
/nfs/zeus/hamr
zeus:/hamrscr nfs 4058200 2153480 1904720 54
/nfs/zeus/hamrscr
zeus:/lcascr1 nfs 142241472 103956480 38284992 74
/nfs/zeus/lcascr1

126

The first column is the actual location of the filesystem. In this case, locations
preceded with / are local, and those preceded with a name (e.g., /zeus:...) are
physically part of another machine. The second column shows which protocol can
mount the remote filesystem—that is, connect it to your computer. The next three
columns show how many blocks are available on the filesystem, how many of those
are in use, and how many are available, followed by the percent use of each device.
The final column shows the local path to the filesystem.

It's useful to know these things if you are working on a system that is made up of
multiple networked machines. From time to time connections are lost, like that to
balder in the previous example. You may log in to a machine that can't find your
home directory because an NFS connection is down. At these times, it's useful to be
able to figure out what the problem is so you can send a concise and helpful email to
the system administrator rather than just saying "help! My home directory is
missing."

5.9.3.3 Checking your compliance with system quotas with quota

On some Unix systems, especially those that provide services to many users, system
administrators implement disk space quotas for each user. The consequences of
exceeding a disk space quota may be obvious. You might find that you're unable to
write files or that you are automatically prompted to delete files each time you log
in. Or, the consequences may be silent, but very annoying. For instance, if you
exceed a quota, you may be able to run a text editor, only to find that it has
overwritten the file you were editing with a file of length zero. Or your older files
may simply start to be deleted as space is needed by other users.

If you're paying for computer time on a shared system, it's in your interest to find
out what the user quota for the system is, for how long you can exceed it, what will
happen if you exceed it, and where and how you can archive your files.

The quota command gives basic information about space usage and quota limits on
systems with quotas. On most Unix systems, issuing the command quota -v gives
space use information even when user disk quotas haven't been exceeded.

5.9.4 Creating Archives of Your Data
So, after months of your time, hundreds of megabytes of files, and several layers of
subdirectories, the otter project is finally complete. Time to move on to the next
project with a clean slate. But as refreshing as it may sound, you can't just type:
% rm -rf otter/

Other people may need to look back at your findings or use them as a starting point
for their own research. At the other extreme, you can't leave your files lying around
or laboriously copy them a few at a time to another location. Not every file needs to
be accessible at all times; some files are replaced, while others are more
conveniently stored elsewhere. This section covers the tools provided by Unix for
archiving your data so you don't have to worry about it on a day-to-day basis but
can find things later when you need them.

127

5.9.4.1 tar: Hold the feathers

Usage: tar functions [options] [arguments] filenames

After going through all the effort of setting up your filesystem rationally, it seems
like a waste to lose that structure in the process of storing it away, like hastily
packed dishes in an unexpected cross-country move. Fortunately, there is a Unix
command that lets you work with whole directories of files while retaining the
directory structure. tar compacts a directory and all its component files and (if you
ask for it) subdirectories into a single file with the name of the compacted directory
and a .tar extension. The options for tar break down into two types: functions (of
which you must choose one) and options. tar is short for "tape archive," since the
utility was originally designed to read and write archives stored on magnetic tape.
Another common use of tar is to package software in a form that can be easily
transferred over the Internet.

To run tar, you must choose one of the following functions:

c

Creates a new tape archive

r

Appends the files to an existing archive

u

Adds files to the archive if they aren't present or are modified

x

Extracts files from an existing archive

t

Prints a table of contents of the archive

The options for tar are as follows:

f archive

Performs the specified operation on archive, which can either be a device
(such as a tape drive or a removable disk) or a tar file

v

(verbose mode) Prints the name of each file archived or extracted with a
character to indicate the function (a for archived; x for extracted)

128

w

(whiny mode) Asks for confirmation at every step

Note that neither functions nor options require the hyphen that usually precedes
Unix command options.

If you type:
% tar cvf otter/

the otter/ directory and all its subdirectories are rolled into a single file called
otter.tar. It's good practice to use the v option, so you can see if something is going
horribly wrong while the archive is being processed.

If, on the other hand, you want to make an archive of the otter/ directory on the
tape drive nftape, you can type:
% tar cvf /dev/nftape otter/

A couple of warnings about tar are in order. First, before you use tar on your system,
you should use which to find out whether the GNU or the standard version is
installed. Several of the options mean different things to each version; the ones
listed earlier are the same in each version.

Second, the tar file you create will be as large as all the contents of the directory and
subdirectories beneath it. This condition has dire implications if your archived
directory is large and you have limited disk space, or you need to transfer large
amounts of tar 'd data. In these cases, you should break down the directory into
subdirectories of a more manageable size, and tar those instead.

If you don't have the space on your current filesystem or partition for your files and
the archive you are creating to exist simultaneously, or you wish to download a
whole archive file and unpack it just to retrieve a few files, you can transfer your
archive over the network or even just to another partition using a combination of ftp
and tar commands. Sending an archive this way and then extracting it at the
destination can be less time-consuming than a cp -r if a large number of files are
involved. The ftp program recognizes a form in which a command replaces the input
filenames. The command is executed in a subshell on the local machine and operates
on files on the local filesystem. The construct is:
ftp command "| command" filename

Inside the ftp program, here's how to send the output of the tar command, enclosed
in quotes, into the filename specified as the target on the remote machine:
put "|tar cvBf - *" filename

Here's how to direct the downloaded archive through the tar command, resulting in
extraction of only the files in the specified directory within the archive:

129

get filename.tar "|tar xvf - dirname"

Finally, here's how to list the contents of the remote archive:
get filename.tar "|tar t - *"

5.9.4.2 compress

Usage: compress -[options] filenames

Ultimately, you don't want to be left with large—if more manageable—tar files
cluttering up your filesystem. In this situation, data-compression utilities are
important, since they allow you to cheat and reduce the amount of space that files
take up on your hard disk. compress is the standard Unix file-compression
command. It's the opposite of uncompress, the command used in Chapter 3 to open
compressed papers and software. compress adds a .Z to the end of the filename.

Here are the most useful options for compress :

-f

Forces compression; even if there is already a compressed version of the file,
the main effect is to not overwrite an existing compressed file

-v

(verbose mode) Prints percentage compression achieved by the file

-r

(recursive mode) If compress is applied to a directory that contains
subdirectories, compresses their contents as well as those of the original
directory

If you have a text file named stoat.txt and the tar file of the otter/ directory from the
last section, and you want to compress both and look at the resulting compression
ratio achieved, type:
% compress -v stoat.txt otter.tar

This command produces two files stoat.txt.Z and otter.tar.Z. The files can be
uncompressed using the uncompress command or gzip -d (described next). In case
you were wondering, natural languages (the kind humans use) end up with a
compression ratio around 60%, and programming languages get around 40%. Try
compressing the sequences of some of your favorite proteins to see what sort of
ratio you get: the values can be wildly variable, depending on whether there are
repeats in the sequence.

5.9.4.3 gzip

130

Usage: gzip -[options] filenames

As usual, in addition to the standard Unix compress, there's a faster and more
efficient GNU utility: gzip. gzip behaves in much the same way as compress, except
that it gets better compression on average, since it uses a superior algorithm. gzip
adds the suffix .gz to a file that it compresses. It emulates the compress options
described earlier and adds a few of its own:

-N

(default setting) Preserves the original name and timestamp from the file
being compressed

-q

(quiet mode) Suppresses warnings when running

-d

Returns a file that has been compressed by gzip to its uncompressed state;
gzip can also recognize and uncompress files produced by compress

Part III: Tools for Bioinformatics
Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 6. Biological Research on the Web
The Internet has completely changed the way scientists search for and exchange
information. Data that once had to be communicated on paper is now digitized and
distributed from centralized databases. Journals are now published online. And
nearly every research group has a web page offering everything from reprints to
software downloads to data to automated data-processing services.

A simple web search for the word bioinformatics yields tens of thousands of results.
The information you want may be number 345 in the list or it may not be found at
all. Where can you go to find only the useful software and data, and scientific
articles? You won't always get there by a simple web search. How can you judge
which information is useful? Publication on the Web gives information an appearance

131

of authority it may not merit. How can you judge if software will give the type of
results you need and perform its function correctly?

In this chapter we examine the art of finding information on the Web. We cover
search engines and searching, where to find scientific articles and software, and how
to use the classic online information sources such as PubMed. And once you've
located your information, we help you figure out how to use it. Among the largest
sources of information for biologists are the public biological databases. We discuss
the history of the public databases, data annotation, the various forms the data can
take, and how to get data in and out. Finally, we give you some pointers on how to
judge the quality of the information you find out there.

The Internet is a tremendously useful information source for biological research. In
addition to allowing researchers to exchange software and data easily, it can be a
source of the kind of practical advice about computer software and hardware,
experimental methods and protocols, and laboratory equipment that you once could
get only by buying a beer for a seasoned lab worker or computer hacker. Use the
Internet, but use it wisely.

6.1 Using Search Engines
AltaVista, Lycos, Google, HotBot, Northern Light, Dogpile, and dozens of other search
engines exist to help you find your way around the billion or more pages that make
up the Web. As a scientist, however, you're not looking for common web
commodities such as places to order books on the Web or online news or porn sites.
You're looking for perhaps a couple of needles in a large haystack.

Knowing how to structure a query to weed out the majority of the junk that will
come up in a search is very useful, both in web searching and in keyword-based
database searching. Understanding how to formulate boolean queries that limit your
search space is a critical research skill.

6.1.1 Boolean Searching
Most web surfers approach searching haphazardly at best. Enter a few keywords into
the little box, and look at whatever results come up. But each search engine makes
different default assumptions, so if you enter protein structure into Excite's query
field, you are asking for an entirely different search than if you enter protein
structure into Google's query field. In order to search effectively, you need to use
boolean logic, which is an extremely simple way of stating how a group of things
should be divided or combined into sets.

Search engines all use some form of boolean logic, as do the query forms for most of
the public biological databases. Boolean queries restrict the results that are returned
from a database by joining a series of search terms with the operators AND, OR, and
NOT. The meaning of these operators is straightforward: joining two keywords with
AND finds documents that contain only keyword1 and keyword2 ; using OR finds
documents that contain either keyword1 or keyword2 (or both); and using NOT finds
documents that contain keyword1 but not keyword2.

132

However, search engines differ in how they interpret a space or an implied operator.
Some search engines consider a space an OR, so when you type protein structure,
you're really asking for protein or structure. If you search for protein structure on
Excite, which defaults to OR, you come up with a lot of advertisements for fad diets
and protein supplements before you ever get to the scientific sites you're interested
in. On the other hand, Google defaults to AND, so you'll find only references that
contain protein and structure, which is probably what you intended to look for in the
first place. Find out how the search engine you're using works before you formulate
your query.

Boolean queries are read from left to right, just like text. Parentheses can structure
more complex boolean queries. For instance, if you look for documents that contain
keyword1 and one of either keyword2 or keyword3, but not keyword4, your query
would look like this: (keyword1 AND (keyword2 OR keyword3)) NOT keyword4.

Many search engines allow you to use quotation marks to specify a phrase. If you
want to find only documents in which the words protein structure appear together in
sequence, searching for "protein structure" is one way to narrow your results.

Let's say you want to search a literature database for references about computing
electrostatic potentials for protein molecules, and you only want to look for
references by two authors, Barry Honig and Andrew McCammon. You might structure
a boolean query statement as follows:
((protein AND "electrostatic potential") AND (Honig OR McCammon))

This statement tells the search engine you want references that contain both the
word protein and the phrase electrostatic potential, and that you require either one
or the other of the names Honig and McCammon.

There are many excellent web tutorials available on boolean searching. Try a search
with the phrase boolean searching in Google, and see what comes up.

6.1.2 Search Engine Algorithms
While the purpose of this book isn't to describe exhaustively how search engines
work, there are significant differences in how search engines build their databases
and rank sites. These differences make some search engines far more useful than
others for searching science and technology web sites.

Key features to look at in a web search engine's database building and indexing
strategies are free URL submission, full-text indexing, automated, comprehensive
web crawling, a fast "refresh rate," and a sensible ranking strategy for results.

Our current favorite search engine is Google. Google is extremely comprehensive,
indexing over 1 billion URLs. Pages are ranked based on how many times they are
linked from other pages. Links from well-connected pages are considered more
significant than links from isolated pages. The claim is that a Google search will bring
you to the most well-traveled pages that match your search topic, and we've found
that it works rather well. Google caches copies of web pages, so pages can be
accessible even if the server is offline. It returns only pages that contain all the

133

relevant query terms. Google uses a shorthand version of the standard boolean
search formula, and it allows such specialized services as locating all the pages that
link back to a page of interest.

For the neophyte user, however, HotBot is probably the best search engine. HotBot
is relatively comprehensive and regularly updated, and it offers form-based query
tools that eliminate the need for you to formulate even simple query statements.

6.2 Finding Scientific Articles
Scientists have traditionally been able to trust the quality of papers in print journals
because these journals are refereed. An editor sends each paper to a group of
experts who are qualified to judge the quality of the research described. These
reviewers comment on the manuscript, often requiring additions, corrections, and
even further experiments before the paper is accepted for publication. Print journals
in the sciences are, increasingly frequently, publishing their content in an electronic
format in addition to hardcopy. Almost every major journal has a web site, most of
which are accessible only to subscribers, although access to abstracts usually is free.
Scientific articles in these web journals go through the same process of review as
their print counterparts.

Another trend is e-journals, which have no print counterpart. These journals are
usually refereed, and it shouldn't be too hard to find out by whom. For instance, the
Journal of Molecular Modeling, an electronic journal published by Springer-Verlag,
has links to information about the journal's editorial policy prominently displayed on
its home page.

An excellent resource for searching the scientific literature in the biological sciences
is the free server sponsored by the National Center for Biotechnology Information
(NCBI) at the National Library of Medicine. This server makes it possible for anyone
with a web browser to search the Medline database. There are other literature
databases of comparable quality available, but most of these are not free. Your
institution may offer access to such sources as Lexis-Nexis or Cambridge Scientific
Abstracts.

Outside of refereed resources, however, anyone can publish information on the Web.
Often research groups make papers available as technical reports on their web sites.
These technical reports may never be peer reviewed or published outside the
research group's home organization, and your only clue to their quality is the
reputation and expertise of the authors. This isn't to say that you shouldn't trust or
seek out these sources. Many government organizations and academic research
groups have reference material of near-textbook quality on their web sites. For
example, the University of Washington Genome Center has an excellent tutorial on
genome sequencing, and NCBI has a good practical tutorial on use of the BLAST
sequence alignment program and its variants.

6.2.1 Using PubMed Effectively
PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) is one of the most
valuable web resources available to biologists. Over 4,000 journals are indexed in
PubMed, including most of the well-regarded journals in cell and molecular biology,

134

biochemistry, genetics, and related fields, as well as many clinical publications of
interest to medical professionals.

PubMed uses a keyword-based search strategy and allows the boolean operators
AND, OR, and NOT in query statements. Users can specify which database fields to
check for each search term by following the search term with a field name enclosed
in square brackets.

Additionally, users can search PubMed using Medical Subject Heading (MeSH) terms.
MeSH is a library of standardized terms that may help locate manuscripts that use
alternate terms to refer to the same concept. The MeSH browser
(http://www.nlm.nih.gov/mesh/meshhome.html) allows users to enter a word or
word fragment and find related keywords in the MeSH library. PubMed automatically
finds MeSH terms related to query terms and uses them to enhance queries.

For example, we searched for "protein electrostatics" in PubMed. The terms protein
and electrostatics are automatically joined with an AND unless otherwise specified.
The resulting boolean query statement submitted to PubMed is actually:
((("proteins"[MeSH Terms] OR protein[Text Word]) AND
("electrostatics"[MeSH Terms]
OR electrostatics[Text Word])) AND notpubref[sb])

The results of the search are shown in Figure 6-1.

Figure 6-1. Results from a PubMed search

135

As you can see in Figure 6-2, PubMed also allows you to use a web interface to
narrow your search. The Limits link immediately below the query box on the main
PubMed page takes you to this web form.

Figure 6-2. Narrowing a search strategy using the Limits menu in PubMed

136

The Limits form allows you to add specificity to your query. You can limit your search
to particular fields in the PubMed database record, such as the Author Name or
Substance Name field. Searches can also be limited by language, content (e.g.,
searching for review articles or clinical trials only), and date. For clinical research
publications, the search can be limited based on the species, age, and gender of the
research subjects.

The Preview/Index menu allows you to build a detailed query interactively. You can
select a specific data field (for instance, the Author Name field) and then enter a
term you want to search for within the specified field only. Clicking the AND, OR, or
NOT buttons joins the new term to your previous query terms using the specified
boolean operator.

For instance, you might start with a general search for "protein AND electrostatics,"
then go to the Preview/Index page (Figure 6-3) and specify that you want to search
for "Gilson OR McCammon" in the Author Name field only.

Figure 6-3. Building a PubMed query using the Preview/Index form

137

You can also use the options in the History form to access results from earlier
searches, and to narrow a search by adding new terms to the query.

If you want to collect results from multiple queries and save them into one big file,
the Clipboard will allow you to do that. To save individual results to the Clipboard,
simply click the checkbox next to the result you want to save, then click the Add to
Clipboard button in the menu at the top of your results page.[1]

[1] You'll notice that all the checkbox-clicking to select and save individual results can get time-
consuming if you're working with a lot of pages of results. It would be easier if you could come
up with a search strategy that was absolutely certain to bring up only the results you want.
There's no solution for this within the NCBI tools, and writing your own scripts to process
batches of results may not help you either. The limitation is in the ability of computer
programs to parse human language.

If you find a search strategy that works for you in PubMed, you can save that
strategy in the form of a URL, and repeat the same search at any time in the future
by visiting that URL. To save a PubMed URL, click the Details link on your results
page, then click the URL link on the Details page. The URL of your search will appear
in the Location field at the top of the web browser, so that you can bookmark it.

The "bookmarkable" URL for a PubMed search should look something like this:
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=PureSearch&db=
PubMed&details_term=%28%28%28%28%28%28%22proteins%22%5BMeSH%20Terms
%5D%20OR%20protein%5BText%20Word%5D%29%20AND%20%28%22electrostatics
%22%5BMeSH%20Terms%5D%20OR%20electrostatics%5BText%20Word%5D%29%29
%20AND%20hasabstract%5Btext%5D%29%20AND%20Review%5Bptyp%5D%29%20AND
%20English%5BLang%5D%29%20AND%20notpubref%5Bsb%5D%29

Spending a few hours developing some detailed PubMed search strategies that work
for you, and saving them, can save you a lot of work in the future.

6.3 The Public Biological Databases

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=PureSearch&db=

138

The nomenclature problem in biology at the molecular level is immense. Genes are
commonly known by unsystematic names. These may come from developmental
biology studies in model systems, so that some genes have names like flightless,
shaker, and antennapedia due to the developmental effects they cause in a particular
animal. Other names are chosen by cellular biologists and represent the function of
genes at a cellular level, like homeobox. Still other names are chosen by biochemists
and structural biologists and refer to a protein that was probably isolated and studied
before the gene was ever found. Though proteins are direct products of genes, they
are not always referred to by the same names or codes as the genes that encode
them. This kind of confusing nomenclature generally means that only a scientist who
works with a particular gene, gene product, or the biochemical process that it's a
part of can immediately recognize what the common name of the gene refers to.

The biochemistry of a single organism is a more complex set of information than the
taxonomy of living species was at the time of Linnaeus, so it isn't to be expected that
a clear and comprehensive system of nomenclature will be arrived at easily. There
are many things to be known about a given gene: its source organism, its
chromosomal location, and the location of the activator sequences and identities of
the regulatory proteins that turn it on and off. Genes also can be categorized by
when during the organism's development they are turned on, and in which tissues
expression occurs. They can be categorized by the function of their product, whether
it's a structural protein, an enzyme, or a functional RNA. They can be categorized by
the identity of the metabolic pathway that their product is part of, and by the
substrate it modifies or the product it produces. They can be categorized by the
structural architecture of their protein products. Clearly this is a wealth of
information to be condensed into a reasonable nomenclature. Figure 6-4 shows a
portion of the information that may be associated with a single gene.

Figure 6-4. Some of the information associated with a single gene

The problem for maintainers of biological databases becomes mainly one of
annotation; that is, putting sufficient information into the database that there is no
question of what the gene is, even if it does have a cryptic common name, and
creating the proper links between that information and the gene sequence and serial
number. Correct annotation of genomic data is an active research area in itself, as

139

researchers attempt to find ways to transfer information across genomes without
propagating error.

Storage of macromolecular data in electronic databases has given rise to a way of
working around the problem of nomenclature. The solution has been to give each
new entry into the database a serial number and then to store it in a relational
database that knows the proper linkages between that serial number, any number of
names for the gene or gene product it represents, and all manner of other
information about the gene. This strategy is the one currently in use in the major
biological databases. The questions databases resolve are essentially the same
questions that arise in developing a nomenclature. However, by using relational
databases and complex querying strategies, they (perhaps somewhat unfortunately)
avoid the issue of finding a concise way for scientists to communicate the identities
of genes on a nondigital level.

6.3.1 Data Annotation and Data Formats
The representation and distribution of biological data is still an open problem in
bioinformatics. The nucleotide sequences of DNA and RNA and the amino acid
sequences of proteins reduce neatly to character strings in which a single letter
represents a single nucleotide or amino acid. The remaining challenges in
representing sequence data are verification of the correctness of the data, thorough
annotation of data, and handling of data that comes in ever-larger chunks, such as
the sequences of chromosomes and whole genomes.

The standard reduced representation of the 3D structure of biomolecule consists of
the Cartesian coordinates of the atoms in the molecule. This aspect of representing
the molecule is straightforward. On the other hand, there are a host of complex
issues for structure databases that are not completely resolved. Annotation is still an
issue for structural data, although the biology community has attempted to form a
consensus as to what annotation of a structure is currently required.

In the last 15 years, different researchers have developed their own styles and
formats for reporting biological data. Biological sequence and structure databases
have developed in parallel in the United States and in Europe. The use of proprietary
software for data analysis has contributed a number of proprietary data formats to
the mix. While there are many specialized databases, we focus here on the fields in
which an effort is being made to maintain a comprehensive database of an entire
class of data.

6.3.2 3D Molecular Structure Data
Though DNA sequence, protein sequence, and protein structure are in some sense
just different ways of representing the same gene product, these datatypes currently
are maintained as separate database projects and in unconnected data formats. This
is mainly because sequence and structure determination methods have separate
histories of development.

The first public molecular biology database, established nearly 10 years before the
public DNA sequence databases, was the Protein Data Bank (PDB), the central
repository for x-ray crystal structures of protein molecules.

140

While the first complete protein structure was published in the 1950s, there were not
a significant number of protein structures available until the late 1970s. Computers
had not developed to the point where graphical representation of protein structure
coordinate data was possible, at least at useful speeds. However, in 1971, the PDB
was established at the Brookhaven National Laboratory, to store protein structure
data in a computer-based archive. A data format developed, which owed much of its
style to the requirements of early computer technology. Throughout the 1970s and
1980s, the PDB grew. From 15 sets of coordinates in 1973, it grew to 69 entries in
1976. The number of coordinate sets deposited each year remained under 100 until
1988, at which time there were still fewer than 400 PDB entries.

Between 1988 and 1992, the PDB hit the turning point in its exponential growth
curve. By January 1994, there were 2,143 entries in the PDB; at the time of this
writing, the PDB has nearly reached the 14,000-entry mark. Management of the PDB
has been transferred to a consortium of university and public-agency researchers,
called the Research Collaboratory for Structural Bioinformatics, and a new format for
recording of crystallographic data, the Macromolecular Crystallographic Information
File (mmCIF), is being phased in to replace the antiquated PDB format. Journals that
publish crystallographic results now require submission to the PDB as a condition of
publication, which means that nearly all protein structure data obtained by academic
researchers becomes available in the PDB in a fairly timely fashion.

A common issue for data-driven studies of protein structure is the redundancy and
lack of comprehensiveness of the PDB. There are many proteins for which numerous
crystal structures have been submitted to the database. Selecting subsets of the PDB
data with which to work is therefore an important step in any statistical study of
protein structure. As of December 1998, only about 2,800 of the protein chains in
the PDB were sufficiently different from each other (having less than 95% of their
sequence in common) to be considered unique. Many statistical studies of protein
structure are based on sets of protein chains that have no more than 25% of their
sequence in common; if this criterion is used, there are still only around 1,000
unique protein folds represented in the PDB. As the amount of biological sequence
data available has grown, the PDB now lags far behind the gene-sequence
databases.

6.3.3 DNA, RNA, and Protein Sequence Data
Sequence databases generally specialize in one type of sequence data: DNA, RNA, or
protein. There are major sequence data collections and deposition sites in Europe,
Japan, and the United States, and there are independent groups that mirror all the
data collected in the major public databases, often offering some software that adds
value to the data.

In 1970, Ray Wu sequenced the first segment of DNA; twelve bases that occurred as
a single strand at the end of a circular DNA that was opened using an enzyme.
However, DNA sequencing proved much more difficult than protein sequencing,
because there is no chemical process that selectively cleaves the first nucleotide
from a nucleic acid chain. When Robert Holley reported the sequencing of a 76-
nucleotide RNA molecule from yeast, it was after seven years of labor. After Holley's
sequence was published, other groups refined the protocols for sequencing, even
successfully sequencing an 3,200-base bacteriophage genome. Real progress with
DNA sequencing came after 1975, with the chemical cleavage method designed by

141

Allan Maxam and Walter Gilbert, and with Frederick Sanger's chain-terminator
procedure.

The first DNA sequence database, established in 1979, was the Gene Sequence
Database (GSDB) at Los Alamos National Lab. While GSDB has since been
supplanted by the worldwide collaboration that is the modern GenBank, up-to-date
gene sequence information is still available from GSDB through the National Center
for Genome Resources.

The European Molecular Biology Laboratory, the DNA Database of Japan, and the
National Institutes of Health cooperate to make all publicly available sequence data
available through GenBank. NCBI has developed a standard relational database
format for sequence data, known as the ASN.1 format. While this format promises to
make locating the right sequences of the right kind in GenBank easier, there are still
a number of services providing access to nonredundant versions of the database.

The DNA sequence database grew slowly through its first decade. In 1992, GenBank
contained only 78,000 DNA sequences—a little over 100 million base pairs of DNA. In
1995, the Human Genome Project, and advances in sequencing technology, kicked
GenBank's growth into high gear. GenBank currently doubles in size every 6 to 8
months, and its rate of increase is constantly growing.

6.3.4 Genomic Data
In addition to the Human Genome Project, there are now separate genome project
databases for a large number of model organisms. The sequence content of the
genome project databases is represented in GenBank, but the genome project sites
also provide everything from genome maps to supplementary resources for
researchers working on that organism. As of October 2000, NCBI's Entrez Genome
database contained the partial or complete genomes of over 900 species. Many of
these are viruses. The remainder include bacteria; archaea; yeast; commonly
studied plant model systems such as A. thaliana, rice, and maize; animal model
systems such as C. elegans, fruit flies, mice, rats, and puffer fish; as well as
organelle genomes. NCBI's web-based software tools for accessing these databases
are constantly evolving and becoming more sophisticated.

6.3.5 Biochemical Pathway Data
The most important biological activities don't happen by the action of single
molecules, but as the orchestrated activities of multiple molecules. Since the early
20th century, biochemists have studied these functional ensembles of enzymes and
their substrates. A few research groups have begun work on intelligently organizing
and storing these pathways in databases. Two examples of pathway databases are
WIT and KEGG. WIT, short for "What Is There?", was developed at Argonne National
Labs. It's a database containing reconstructed metabolic pathways for organisms
whose genomes have been entirely sequenced. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) stores similar data but links in information from sequence,
structure, and genetic linkage databases. Both databases are queryable through web
interfaces and are curated by a combination of automation and human expertise.

142

In addition to these whole genome "parts catalogs," other, more specialized
databases that focus on specific pathways (such as intercellular signaling or
degradation of chemical compounds by microbes) have been developed.

6.3.6 Gene Expression Data
DNA microarrays (or gene chips) are miniaturized laboratories for the study of gene
expression. Each chip contains a deliberately designed array of probe molecules that
can bind specific pieces of DNA or mRNA. Labeling the DNA or RNA with fluorescent
molecules allows the level of expression of any gene in a cellular preparation to be
measured quantitatively. Microarrays also have other applications in molecular
biology, but their use in studying gene expression has opened up a new way of
measuring genome functions.

Since the development of DNA microarray technology in the late 1990s, it has
become apparent that the increase in available gene expression data will eventually
parallel the growth of the sequence and structure databases, and that this is another
datatype for which public access to raw data will be desirable. Raw microarray data
has just begun to be made available to the public in selective databases, and talk of
establishing a central data repository for such data is underway. However, formats
for delivering this kind of data are still not standardized; often, it's made available in
large spreadsheets or tab-delimited text. Two of the most comprehensive resources
for microarray data are the National Human Genome Research Initiative's Microarray
Project site and the Stanford Genome Resources site. Since many of the early
microarray expression experiments were performed at Stanford, their genome
resources site has links to both raw data and, in some cases, databases that can be
queried using gene names or functional descriptions. Recently, the European
Bioinformatics Institute has been instrumental in developing a set of standards for
deposition of microarray data in databases. Several databases also exist for the
deposition of 2D gel electrophoresis results, including SWISS-2DPAGE and HSC-
2DPAGE. 2D-PAGE is a technology that allows quantitative study of protein
concentrations in the cell, for many proteins simultaneously. The combination of
these two techniques is a powerful tool for understanding how genomes work.

Table 6-1 summarizes sources on the Web for some of the most important databases
we've discussed in this section.

Table 6-1. Major Biological Data and Information Sources
Subject Source Link

Biomedical
literature PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
Nucleic acid
sequence GenBank http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide

SRS at
EMBL /EBI http://srs.ebi.ac.uk

Genome
sequence

Entrez
Genome http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Genome
TIGR
databases http://www.tigr.org/tdb/

Protein GenBank http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
http://srs.ebi.ac.uk
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Genome
http://www.tigr.org/tdb/
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein

143

sequence
SWISS-
PROT at
ExPASy

http://www.expasy.ch/spro/

PIR http://www-nbrf.georgetown.edu
Protein
structure

Protein
Data Bank http://www.rcsb.org/pdb/

Entrez
Structure DB
Protein and
peptide
mass
spectroscopy

PROWL http://prowl.rockefeller.edu

Post-
translational
modifications

RESID http://www-nbrf.georgetown.edu/pirwww/search/textresid.html

Biochemical
and
biophysical
information

ENZYME http://www.expasy.ch/enzyme/

BIND http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Structure
Biochemical
pathways PathDB http://www.ncgr.org/software/pathdb/

KEGG http://www.genome.ad.jp/kegg/
WIT http://wit.mcs.anl.gov/WIT2/

Microarray
Gene
Expression
Links

http://industry.ebi.ac.uk/~alan/MicroArray/

2D-PAGE SWISS-
2DPAGE http://www.expasy.ch/ch2d/ch2d-top.html

Web
resources

The EBI
Biocatalog http://www.ebi.ac.uk/biocat/
IUBio
Archive http://iubio.bio.indiana.edu

6.4 Searching Biological Databases
There are dozens of biological databases on the Web, and many alternate web
interfaces that provide access to the same sets of data. Which ones you use depends
on your needs, but it's necessary for you to be aware of what the central data
repositories are for various datatypes, and how often the more peripheral databases
you might be using synchronize themselves with these central data sources.

Although data repositories for new types of biological data are multiplying, we focus
here on two established databases: NCBI's GenBank, for DNA sequence data; and
the Protein Data Bank, for molecular structure data. Every database has its own
deposition procedures, and for the newer datatypes these are not yet well
established or are still changing rapidly. However, both NCBI and RCSB have mature,

http://www.expasy.ch/spro/
http://www-nbrf.georgetown.edu
http://www.rcsb.org/pdb/
http://prowl.rockefeller.edu
http://www-nbrf.georgetown.edu/pirwww/search/textresid.html
http://www.expasy.ch/enzyme/
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Structure
http://www.ncgr.org/software/pathdb/
http://www.genome.ad.jp/kegg/
http://wit.mcs.anl.gov/WIT2/
http://industry.ebi.ac.uk/~alan/MicroArray/
http://www.expasy.ch/ch2d/ch2d-top.html
http://www.ebi.ac.uk/biocat/
http://iubio.bio.indiana.edu

144

automated, web-based deposition systems that are not likely to change drastically in
the near future.

6.4.1 GenBank
NCBI, in cooperation with EMBL and other international organizations, provides the
most complete collection of DNA sequence data in the world, as well as PubMed, a
taxonomy database, and an alternate access point for protein sequence and
structure data. This database, known as GenBank, may be accessed at
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein.

NCBI maintains sequence data from every organism, every source, every type of
DNA—from mRNA to cDNA clones to expressed sequence tags (ESTs) to high-
throughput genome sequencing data and information about sequence
polymorphisms. Users of the NCBI database need to be aware of the differences
between these datatypes so that they can search the data set that's most
appropriate for the work they're doing. The main sequence types that you'll
encounter in a full GenBank search include:

mRNA

Messenger RNA, the product of transcription of genomic DNA. mRNA may be
edited by the cell to remove introns (in eukaryotes) or in other ways that
result in differences from the transcribed genomic DNA. May be "partial" or
"complete"; an mRNA may not cover the complete coding sequence of a
gene.

cDNA

A DNA sequence artificially generated by reverse transcription of mRNA. cDNA
roughly represents the coding components of the genomic DNA region that
produced the mRNA. May also be "partial" or "complete."

Genomic DNA

A DNA sequence from genome sequencing that contains both coding and
noncoding DNA sequences. May contain introns, repeat regions, and other
features. Genomic DNA (as opposed to genome survey sequence) is generally
"complete"; it's a result of multiple sequencing passes over a single stretch of
a genome, and can generally be relied upon as a fairly good representation of
the real DNA sequence of that region.

EST

Short cDNA sequences prepared from mRNA extracted from a cell under
particular conditions or in specific developmental phases (e.g., arabidopsis
thaliana 2-week old shoots or valencia orange seeds). ESTs are used for quick
identification of genes and don't cover the entire coding sequence of a gene.

GSS

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein

145

Genome survey sequence. Single-pass sequence direct from the genome
projects. Covers each region of sequence only once and is likely to contain a
relatively large proportion of sequencing errors. You'd include genome survey
sequence in a search only if you were looking for very new hypothetical gene
annotations in a genome project that's still in progress.

There are two ways to search GenBank. The first is to use a text-based query to
search the annotations associated with each DNA sequence entry in the database.
The second, which we'll discuss in Chapter 7, is to use a method called BLAST to
compare a query DNA (or protein) sequence to a sequence database.

Here's a sample GenBank record. Each GenBank entry contains annotation—
information about the gene's identity, the conditions under which it was
characterized, etc.—in addition to sequence.
LOCUS AB009351 1412 bp mRNA PLN 22-JUN-1999
DEFINITION Citrus sinensis mRNA for chalcone synthase, complete cds,
clone

CitCHS2.
ACCESSION AB009351 VERSION AB009351.1 GI:5106368
KEYWORDS chalcone synthase.
SOURCE Citrus sinensis young seed cDNA to mRNA, clone:CitCHS2.

ORGANISM Citrus sinensis
Eukaryota; Viridiplantae; Streptophyta; Embryophyta;

Tracheophyta;
euphyllophytes; Spermatophyta; Magnoliophyta;

eudicotyledons; core
eudicots; Rosidae; eurosids II; Sapindales; Rutaceae;

Citrus.
REFERENCE 1 (sites)

AUTHORS Moriguchi,T., Kita,M., Tomono,Y., EndoInagaki,T. and
Omura,M.

TITLE One type of chalcone synthase gene expressed during
embryogenesis

regulates the flavonoid accumulation in citrus cell
cultures

JOURNAL Plant Cell Physiol. 40 (6), 651-655 (1999)
MEDLINE 99412624
[...]

FEATURES Location/Qualifiers
Source 1..1412

/organism="Citrus sinensis"
/db_xref="taxon:2711"
/clone="CitCHS2"
/dev_stage="young seed"
/note="Valencia orange"

CDS 30..1205
/codon_start=1
/product="chalcone synthase"
/protein_id="BAA81664.1"
/db_xref="GI:5106369"
/translation="MATVQEIRNAQRADGPATVLAIGTATPAHSVNQADYPDYYFRIT
KSEHMTELKEKFKRMCDKSMIKKRYMYLTEEILKENPNMCAYMAPSLDARQDIVVVEV
PKLGKEAATKAIKEWGQPKSKITHLIFCTTSGVDMPGADYQLTKLIGLRPSVKRFMMY
QQGCFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPADTHLDSLVGQALFGDG

146

AAAVIVGADPDTSVERPLYQLVSTSQTILPDSDGAIDGHLREVGLTFHLLKDVPGLIS
KNIEKSLSEAFAPLGISDWNSIFWIAHPGGPAILDQVESKLGLKGEKLKATRQVLSEY
GNMSSACVLFILDEMRKKSVEEAKATTGEGLDWGVLFGFGPGLTVETVVLHSVPIKA"

polyA_site 1412
/note="18 a nucleotides"

BASE COUNT 331 a 358 c 372 g 351 t
ORIGIN

1 aaacatattc attaagggtt caacttgaaa tggcaaccgt tcaagagatc agaaacgctc
61 agcgtgccga cggcccggcc accgtcctcg ccatcggtac ggccacgcct gcccacagtg
121 tcaaccaggc tgattatccc gactattact tcaggatcac aaagagcgag catatgacgg
[...]
1261 cacagttgag ttattggttg atcgtgtgaa ggtttagttt tgtcaattga

gtttaaggca
1321 tcgtgccttt tctcttatga cgtcaccaaa cctgggcaac gctttgtgtt

tatgcataaa
1381 ttcttgggaa tttgagaaag tagtaaattt gt

//

This sample GenBank record shows the types of fields that can be found in a record
from the GenBank Nucleotide database. Everything from the identity of the protein
product (in this example, chalcone synthase), the sequence of the protein product,
and its starting and ending point within the gene, to the authors who submitted the
record and the journal references in which the experiment was described, can be
found in the record, and therefore can be used to search the database.

The GenBank search interface is nearly identical to the PubMed search interface. The
Limits, Preview/Index, History, and Clipboard features for searching work the same
way in the Protein, Nucleic Acid, and Genome databases as they do for PubMed,
although the specific fields that can be searched and limits that can be set are
somewhat different.

6.4.1.1 Saving search results

Sequences can be downloaded from NCBI in any of three file formats: the simple
FASTA format, which is readable by many sequence analysis programs but contains
little information other than sequence; the GenBank flat file format, which is a legacy
flat file format that was used at GenBank earlier in its history; and the modern
ASN.1 (Abstract Syntax Notation One) format. ASN.1 is a generic data specification,
designed to promote database interoperability, that is now used for storage and
retrieval of all datatypes—sequences, genomes, structure, and literature—at NCBI.
The NCBI Toolkit, a code library for developing molecular biology software, relies on
the ASN.1 specification. NCBI, and increasingly, other organizations, rely on the
NCBI Toolkit for software development. Learning to use the NCBI Toolkit is a
programming challenge well beyond the scope of this book, but there is an excellent
tutorial on the Web, developed by Christopher Hogue and his research group at the
Samuel Lunenfeld Research Institute.

The casual database user or depositor doesn't have to think too much about file
formats, except if database files are to be exported and read by another piece of
software. NCBI's forms-based interfaces convert user-entered data into the
appropriate format for deposition, and the availability of GenBank files in FASTA
format means that most sequence analysis software can handle sequence files you
download from NCBI without complicated conversions.

147

When you save results of a GenBank search, you can choose the format in which to
save them. Earlier, you saw what the GenBank sequence record looks like. Many of
the computer programs we discuss in the following chapters can read GenBank
format sequence files, but some can't. A particularly foolproof format in which to
save your sequence files if you're going to process them with other software is the
FASTA format. FASTA files have a simple format, a single comment line that begins
with a > character, followed by single-character DNA sequence on as many lines as
needed to hold the sequence, with no breaks. Of course, some information
associated with the gene is lost when you save the data in FASTA format, but if the
program you want to use can't read that extra data, it won't be useful to you
anyway.

Here's a sample of data in FASTA format:
> gene identifier and comments here
MATVQEIRNAQRADGPATVLAIGTATPAHSVNQADYPDYYFRITKSEHMTELKEKFKRMCDKSMIKKRYM
YLTEEILKENPNMCAYMAPSLDARQDIVVVEVPKLGKEAATKAIKEWGQPKSKITHLIFCTTSGVDMPGA
DYQLTKLIGLRPSVKRFMMYQQGCFAGGTVLRLAKDLAENNKGARVLVVCSEITAVTFRGPADTHLDSLV
GQALFGDGAAAVIVGADPDTSVERPLYQLVSTSQTILPDSDGAIDGHLREVGLTFHLLKDVPGLISKNIE
KSLSEAFAPLGISDWNSIFWIAHPGGPAILDQVESKLGLKGEKLKATRQVLSEYGNMSSACVLFILDEMR
KKSVEEAKATTGEGLDWGVLFGFGPGLTVETVVLHSVPIKA

To save your files in FASTA format, simply use the pulldown menu at the top of the
results page. When you first see it, it will say "Summary," but you can change it to
FASTA, ASN.1, and other formats. Once you've chosen your format, you can click the
Save button to save all your sequences into one big FASTA-format file. Figure 6-5
shows you how to change the file formats when doing a GenBank search.

Figure 6-5. Changing the file format to write out your GenBank search
results

6.4.1.2 Saving large result sets

So far, our discussion of information retrieval from databases has assumed that you
need access to only a few sequences at a time. However, modern bioinformatics
studies increasingly deal with large amounts of sequence data. For example,
genefinding programs (covered in Chapter 7) are trained and tested on hundreds or
thousands of DNA sequences; comprehensive studies of protein families can involve
analysis of up to thousands of protein sequences as well. While it's possible to select
thousands of checkboxes on a web page by hand, it would be better to use an
automated tool that can return a large number of sequences based on criteria you
specify.

148

NCBI provides just such a tool in the form of Batch Entrez
(http://www.ncbi.nlm.nih.gov/Entrez/batch.html). Batch Entrez is one of the tools
accessible from the Entrez web site. It's accessed using a web form that allows the
user to select sequences by source organism, by an Entrez query (using the query
structure described in the section on PubMed), or by a list of accession numbers
(provided by the user in the form of a text file). The results of a Batch Entrez search
are then packaged in a file that is downloaded to the user's computer, where the
complete result set can be edited manually or (even better) using a script.

At this time, not all the biological databases are so kind about providing such
services, but all the public databases have FTP sites that allow you to download the
entire database in one form or another. That can take up a lot of space on your hard
disk, but disk space is cheaper these days than the time it would take you to handle
a large set of results on an interactive web site. If you've got a local copy of the big
databases that interest you, you can write (or perhaps even download) a script that
processes the database, looking for your keyword of choice, and writes out the
information you want to a file.

6.4.2 PDB
Unlike NCBI, the Protein Data Bank (http://www.rcsb.org/pdb/) is responsible for
only one type of molecular data: molecular structures of molecules and, to a growing
extent, the underlying raw data sets from which the molecular structures were
modeled.

The PDB web site offers three options for searching the database. You can enter a
four-letter PDB identifier directly, or search using the SearchLite or SearchFields
interfaces. The SearchLite interface is similar to the other query tools we've
discussed. You can enter a term or terms into the query box, joined by the operators
AND, OR, and BUTNOT.

The SearchFields interface is an innovative design-it-yourself web form system. As
you see in Figure 6-6, when you first go to SearchFields, you can scroll down to the
bottom of the web form and select which parts of the form you need. If you're only
going to be doing a FASTA search to find similar sequences, you don't need a search
form that prompts you for keywords to use in searching the Citation Author field. You
might want to add a field that lets you search for proteins with a particular ligand or
prosthetic group. With the SearchFields interface, you select the form elements you
want for your custom PDB search, and click the "New Form" button to generate the
new query form.

Figure 6-6. Customizing the PDB's SearchFields form

149

Whether you use SearchLite or SearchFields, you'll come to the Query Result
browser (Figure 6-7), where you can select options for refining your query,
downloading your results as structure or sequence files, and even preparing a
tabular report of your search results. These options are straightforward to use and
well documented on the PDB web site.

Figure 6-7. Options for using query results at the PDB

The Protein Data Bank makes data available in two formats: the legacy PDB flat- file
format, and the newer mmCIF data format. We'll discuss the differences between
these two file formats in more detail in Chapter 12. At this point, little of the
available structure-analysis and protein-modeling software handles the mmCIF
format, so you are not likely to need to download protein structure data in mmCIF
format unless you are developing new software.[2] You can choose to download the

150

complete set of results from your search as a tar archive or a zipped file in either
PDB or mmCIF format, as well as in sequence-only FASTA format.

[2] The PDB offers a suite of mmCIF and PDB format conversion tools, as well as code libraries
for working with mmCIF files.

Another convenient way to view protein structure data from the PDB web site is to
install a browser plug-in such as RasMol or Chime on your computer. We discuss how
to do this in Chapter 9. Once the plug-in is installed and properly configured, you can
simply click on a link on the protein's View Structure page and the protein structure
is automatically displayed using the plug-in, as shown in Figure 6-8.

Figure 6-8. Viewing a PDB file using a browser plug-in

6.5 Depositing Data into the Public Databases
In addition to downloading information from the public databases, you may also
submit your own results.

6.5.1 GenBank Deposition
Deposition of sequences to GenBank has been made extremely simple by NCBI.
Users depositing only a few sequences can use the web-based BankIt tool, which is a
self-explanatory form-based interface accessible from the GenBank main page at
NCBI. Users submitting multiple sequences or other complicated submissions can use
NCBI's Sequin software, which is available for all major operating systems. Sequin is
well documented on the NCBI site. NCBI has recently established two special
submission paths: EST sequences should be submitted through dbEST, rather than
to GenBank, and genome survey sequences through dbGSS.

151

6.5.2 PDB Deposition
Deposition of structures to the PDB are done using the AutoDep input tool (ADIT).
AutoDep is a tool that integrates data validation software with the deposition process
so that the user can receive feedback on data quality during the deposition process.
AutoDep is tied in with the curation tools the PDB uses to prepare structure data for
inclusion in the data bank.

6.6 Finding Software
Bioinformatics is a diffuse field, attracting researchers from many disciplines, and
articles about new research developments in bioinformatics are widely distributed in
the literature. If you're looking for cutting-edge developments, journals such as
Bioinformatics, Nucleic Acids Research, Journal of Molecular Biology, and Protein
Science often publish papers describing innovations in computational biology
methods.

If you're looking for proven software for a particular application, there are a number
of reliable web resource lists that link to computational biology software sites. Most
of the major biological databases have software resource listings and the necessary
motivation to keep their listings up-to-date. The PDB links to the best free software
packages for macromolecular structure refinement, visualization, and dynamics.
TIGR and NCBI provide links to many tools for protein and DNA sequence analysis.

Many organizations and groups provide web implementations of their software.
These can be a great time-saver, especially if you are new to the use of
noncommercial software packages in research. Many of the bioinformatics programs
that we describe in this book are also available as web servers. You can use the web-
server versions to get you started and understand the inputs, outputs, and options
for the program. However, web servers have their drawbacks. They typically
implement only the most popular options in any software package: it's difficult to
design a web form that allows you to select every option in a complicated program.
They often allow you to run only one calculation at a time. This is fine if you're only
interested in analyzing a few sequences or structures, and not so fine if you suddenly
find yourself with 500 sequences to analyze.

With a little clever programming, you can develop scripts that allow you to hit a web
server with multiple requests without entering them manually into a form, but if
you're capable of doing that, you're probably able to download a local copy of the
software and run it on your own machine. Using your own processor in such cases
avoids slow data transfer to and from remote sites and is also considered more polite
than running huge jobs on someone else's web server.

In the next four chapters, we'll discuss the software packages you are most likely to
want to use. We'll show you how to set them up on your own computer and use
them independent of web interfaces.

We can't cover every available software package and web server in this book; there
are just too many. You will eventually want to go out on your own and find new tools
to use. Keep a few things in mind when searching for software, and you'll soon be
able to judge for yourself if a new computer program is something you want to use.

152

6.7 Judging the Quality of Information
Your ability to judge the quality of information and software you find on the Web will
improve as you continue to learn the field. At a more obvious level, however, some
simple guidelines can help you screen the information you find. Approach software,
information, and services offered on the Web with a healthy skepticism, and you're
not likely to be led astray.

6.7.1 Authority
One of the first things to consider when evaluating software, data, or information
found on the Internet is the source. Who are the authors? If you don't know the
authors presenting the information by reputation, is information about their affiliation
and credentials available on the web site? Is their expertise related to the topic or
purpose of the web site? Do they make it possible for you to contact them and ask
questions?

What is the purpose of the organization sponsoring the information? Is it an
academic organization? A government agency? A company? For-profit corporations
often have different motivations for offering access to their software and data than
nonprofits and academic research groups; usually they are offering a stripped-down
version of their software or services to get you to buy a more complete package. An
individual academic researcher's site doesn't always have the same need to be all-
inclusive as a publicly funded database does. There is nothing inherently wrong with
these offerings, but you should be aware of whether or not they are comprehensive,
whether all their features are available to the casual user, and why.

Even data and software from national or international public sites are not necessarily
entirely correct. It has been estimated that any given sequence in GenBank is likely
to contain at least one error. While these errors generally don't render the data
meaningless, it's always best to be aware of such issues even when using top-of-the-
line public resources. Like any other software you find on the Web, software offered
by public agencies such as NCBI and the PDB may still be under development. You
can use this software, and much of it is of good quality. If you're basing your
research on a beta version (a version still under development) of a software
package, just read the documentation carefully so that you know what problems still
remain to be worked out.

6.7.2 Transparency
When you send data off to a web server for processing, do you ever wonder exactly
what happens to it? You should. It's OK to use your word processor as a black box,
but if you're publishing scientific conclusions based on output that you get from a
web server or software package, you should definitely know at least the basics of
what's under the hood. Anyone can create a web server, based on any software,
whether it's good or just goofy. Creating a web server creates an illusion of
authority; after all, the authors know how to build a web server that works, so their
other software must work too. But that appearance of authority isn't always well
founded.

153

Ideally, you have access to the source code (the human-readable version of a
computer program) for whatever the web server is doing, and you can read the
source code and know it's doing what you expect. But you might not know how to
read source code, and even if you do, you might not be able to get hold of it.
Unfortunately, some bioinformatics software authors don't make their source code
publicly available, preferring to set up web servers that are easier to use and
maintain. This can incidentally have the effect of hiding the underlying method from
close scrutiny by users.

If you can't read the source code, what can you read? Most software or web servers
made available by academic researchers or government institutions have online help
pages and other documentation, including bibliographic information for publications
in refereed journals that describe the methods encoded in the software. Read this
documentation and understand the method and its results before you use it, just as
you would for an experimental method that is new to you.

If the program or server you want to use has no documentation and doesn't allow
you to check the source code, you should seriously consider not using that program,
unless you have some way to verify its output (for instance, by comparison with the
output of a well-documented program). After all, you're drawing conclusions based
on your results; do you want to stake your scientific credibility on an unknown
quantity?

6.7.3 Timeliness
One of the most frequently linked biology resource sites on the Web is Pedro's
Biomolecular Research Tools
(http://www.public.iastate.edu/~pedro/research_tools.html). Sites all over the world
still have pointers to this collection of links. And yet, if you click to Pedro's site, you'll
find that the collection was last updated in 1996. A funny thing about the Web is that
out-of-date sites don't just go away. They remain on the server, looking
authoritative. Check web sites for dates. If there's no sign of activity in or reference
to the current year, be skeptical.

Timeliness isn't always an issue with software. Software written in 1980 can be as
useful and functional now as it was then. What you may encounter are problems
compiling software that incorporates proprietary technologies that are no longer
supported, or code libraries that have since ceased to be developed.

Chapter 7. Sequence Analysis, Pairwise
Alignment, and Database Searching
We now begin our tour of bioinformatics tools in earnest. In the next five chapters,
we describe some of the software tools and applications you can expect to see in
current research in computational biology. From gene sequences to the proteins they
encode to the complicated biological networks they are involved in, computational
methods are available to help you analyze data and formulate hypotheses. We have
focused on commonly used software packages and packages we have used; to
attempt to encompass every detail of every program out there, however, we'd need
to turn every chapter in this book into a book of its own.

154

The first tools we describe are those that analyze protein and DNA sequence data.
Sequence data is the most abundant type of biological data available electronically.
While other databases may eventually rival them in size, the importance of sequence
databases to biology remains central. Pairwise sequence comparison, which we
discuss in this chapter, is the most essential technique in computational biology. It
allows you to do everything from sequence-based database searching, to building
evolutionary trees and identifying characteristic features of protein families, to
creating homology models. But it's also the key to larger projects, limited only by
your imagination—comparing genomes, exploring the sequence determinants of
protein structure, connecting expression data to genomic information, and much
more.

The types of analysis that you can do with sequence data are:

· Knowledge-based single sequence analysis for sequence characteristics
· Pairwise sequence comparison and sequence-based searching
· Multiple sequence alignment
· Sequence motif discovery in multiple alignments
· Phylogenetic inference

We divide our coverage of sequence analysis tools into two chapters. This chapter
focuses on programs that operate on single sequences, or compare gene or protein
sequences against each other. Chapter 8 is devoted to multiple sequence alignment
methods.

Pairwise sequence comparison is the primary means of linking biological function to
the genome and of propagating known information from one genome to another. In
this chapter, we discuss the techniques of biological sequence analysis and, most
importantly, how to assess the significance of results from sequence comparison.
There are also a number of software tools available for doing pairwise sequence
comparison. Table 7-1 provides a summary.

Table 7-1. Sequence Analysis Tools and Techniques
What you do Why you do it What you use to do it

Gene finding Identify possible coding regions in
genomic DNA sequences

GENSCAN,
GeneWise,
PROCRUSTES, GRAIL

DNA feature
detection

Locate splice sites, promoters, and
sequences involved in regulation of gene
expression

CBS Prediction
Server

DNA translation and
reverse translation

Convert a DNA sequence into protein
sequence or vice versa

"Protein machine"
server at EBI

Pairwise sequence
alignment (local)

Locate short regions of homology in a
pair of longer sequences BLAST, FASTA

Pairwise sequence
alignment (global)

Find the best full-length alignment
between two sequences ALIGN

Sequence database
search by pairwise
comparison

Find sequence matches that aren't
recognized by a keyword search; find
only matches that actually have some
sequence homology

BLAST, FASTA,
SSEARCH

155

7.1 Chemical Composition of Biomolecules
Sequence analysis techniques can be applied to DNA and RNA (nucleotide)
sequences or to protein (amino-acid) sequences. To understand why DNA and
protein sequences are informative, you need to know a bit about the chemistry of
DNA and proteins. In the context of the sequence analysis applications we discuss in
this chapter, it's perfectly fine to think of a DNA sequence as pure information. If you
really want to, you can skip over the chemical structures and think of DNA as a
string of letters. But keep this fact in mind: the single-letter sequence code that
describes DNA and is a simplified representation of a 3D chemical entity, and in
some cases the 3D structure of the DNA is really significant.

Proteins, at least at first glance, are more chemically complicated than DNA, and it's
impossible to separate the information content of their sequences from the chemical
properties of the amino acids they're built from. You can't safely forget about the
chemistry of proteins when you're analyzing their sequences, so we'll discuss protein
chemistry thoroughly at the beginning of Chapter 9, before we introduce techniques
for protein structure analysis. As discussed in Chapter 2, DNA is the medium for
storing information in cells, and it stores and transmits that information through the
sequence of nucleotides that make up the DNA chain. DNA occurs as a "double
helix"—two long sequences of nucleotides that are chemical mirror images of each
other. This double-helical structure and the chemistry that forces a specific pattern of
pairing between nucleotides in the two halves of the helix is what gives DNA the
ability to replicate itself and faithfully pass its information from cell to cell and
generation to generation. The chemistry of pairing between nucleotide chains also
allows the DNA sequence to be transcribed into RNA and translated into proteins.

7.2 Composition of DNA and RNA
DNA and RNA are polymer chains composed of a small alphabet of chemically similar
compounds. The individual units are called nucleotides. As you can see in Figure 7-1,
nucleotides are made up of three distinct parts: a cyclic base, a cyclic sugar
(deoxyribose or ribose, respectively), and a phosphate group. Base utilization is
different in DNA than in RNA. The DNA code consists of patterns built up from the A
(adenine), T (thymine), G (guanine), and C (cytosine) nucleotides, while the RNA
code substitutes U (uracil) for T.

Figure 7-1. The "backbone" bits of DNA and RNA—ribose and deoxyribose
phosphates

156

Figure 7-2 shows the five nucleotides, which are also referred to as bases. In
hydrolyzed double-stranded DNA, there are always equal amounts of A and T
nucleotides (A = T). The amounts of G and C in the solution are also always equal (G
= C). This is called Chargaff's rule after the researcher who discovered the
relationships between A and T, G and C. (Note that there can different amounts of A
and T, G, and C; the ratio of A-T to G-C base pairs can vary widely from species to
species.)

Figure 7-2. The five "bases" that commonly appear in DNA or RNA

7.3 Watson and Crick Solve the Structure of DNA
The quantitative relationships between adenine and thymine, and cytosine and
guanine led Watson and Crick to propose a structural model for DNA in 1953, and

157

later Crick's central dogma of biology. Watson and Crick's model of DNA was based
on several observations:

· The x-ray crystallography experiments of their colleague Rosalind Franklin
who observed a diffraction pattern from DNA that suggested a helical
molecule with a regular repeating structure at a spacing of 3.4 angstroms

· Chargaff's rules
· Experimental evidence that the bases were connected by hydrogen bonds in
the DNA molecule

· The knowledge of the correct structural conformations of the bases from x-ray
crystallography

What Watson and Crick did was to combine this disparate information to propose the
double helix. The double helix of DNA, which has now been determined in atomic
detail using x-ray crystallography, is a structure in which adenine pairs with thymine,
and guanine with cytosine by hydrogen bonding (Figure 7-3). The hydrogen bonded
base pairs form the core of the molecule.

Figure 7-3. Two common base pairs, A-T and G-C

As shown in Figure 7-4, the base pairs stack on top of and parallel to each other with
a spacing of 3.4 angstroms. They are held together in sequence by covalent chemical
bonds between the sugar group of one nucleotide and the phosphate group of the
next. This chain has a directionality: the end left with an exposed phosphate group is
called the 5' end, while the end with the exposed ribose group is the 3' end.

Figure 7-4. Schematic of the DNA chain

158

The specific chemical pairing of nucleotides in DNA and RNA sequences suggests a
mechanism by which each strand of DNA can serve as the template for the synthesis
of a complementary strand. The use of a similar nucleotide code in RNA suggests
that DNA can also be used as a template for synthesis of RNA. From these two pieces
of evidence, Crick proposed his central dogma: that DNA directs its own replication
and its transcription into RNA and that RNA is translated into protein.

7.4 Development of DNA Sequencing Methods
If you just digest DNA into its four component bases and measure the quantity of
each, it tells you nothing about the DNA sequence. Modern methods for DNA
sequencing rely on controlled biochemical reactions that allow the base content at
each position in the DNA sequence to be quantitated independently. The chemical
cleavage method for sequencing DNA relies on the specificity of chemical reagents
(reactive substances) to break DNA chains at four specific types of sites. There are
reagents that break or cleave the chain specifically after G nucleotides and reagents
that cleave specifically after C nucleotides. There are also reagents that cleave less
specifically: one to cleave after A and G nucleotides and one to cleave after C and T
nucleotides. The method Maxam and Gilbert designed was conceptually simple. Four
samples of DNA are required for this method. One type of reagent is mixed with each
sample in a quantity that causes each DNA chain in the sample to be broken only
one time, on average, at a random location. One end of the DNA is radioactively
labeled, and the other is not, so only one piece of each broken chain is radioactive
after the chain is cleaved. DNA fragments of different sizes can be separated using

159

an electric current to drive them through a viscous medium called a gel. The larger
the fragment, the more it's slowed by the gel, so at the end of some period of time,
different-sized radioactive pieces of DNA are spread out at regular intervals down the
gel. Figure 7-5 shows a partial autoradiogram of a DNA sequencing gel. Each set of
four closely spaced lanes represents an individual sequencing experiment. The gel is
read from bottom to top. Each band on the gel identifies the nucleotide present at
the position in the sequence, depending on which of the four lanes it appears in.
(Image courtesy of Dr. Dennis Dean, Virginia Tech.) If each DNA chain is broken
once after a random A, C, G, or T, a uniform distribution of fragments that map the
entire sequence of the DNA is created. Depending on which sample the radioactive
piece is from, the last base in its sequence is known, and the sequence can be read
off the gel from end to end.

Figure 7-5. DNA sequencing gel

Sanger's chain-terminator procedure is the most commonly used sequencing
chemistry in modern laboratories. This procedure takes advantage of an enzyme

160

called DNA polymerase, which builds a complementary strand of DNA for an existing
single strand. In Sanger's method, the DNA polymerase reaction is carried out in the
presence of specific analogues of nucleotides that, when they are incorporated,
cause the synthesis of the complementary strand to stop. Four samples are
prepared, each containing a small amount of one type of chain terminator.
Analogously to the Maxam and Gilbert method, a uniform distribution of DNA
fragments is generated, each with a known end residue. The fragments are analyzed
based on the strength of this fluorescence signal, giving the sequence of the
complementary strand to the original DNA.

The chain termination method is easily automated, and computer-compatible
sequencing systems that use this method are readily available. Most genome
sequence data is currently generated using this method, though new sequencing
methods that don't involve chain cleavage or chain termination are in development.
We discuss the process of sequencing data analysis and genome assembly further in
Chapter 11.

7.4.1 The Chemical Composition of Proteins
Unlike DNA, protein polymers consist of a common set of building blocks called
amino acids. There are 20 amino acids that make up the standard chemical alphabet
used to build proteins. Amino acids are small molecules that share a common motif,
of three substituent chemical groups arranged around a central carbon atom. One of
the substituent groups is always an amino group; another is always carboxylic acid
group. To form the protein polymer, the amino and carboxyl groups react with each
other and form a bond called the peptide bond. The third substituent on the central
carbon of an amino acid is variable, and it's this property that makes the amino acids
into a code for storing information. The sequence of amino acids in a protein is
referred to as the protein's primary structure. Protein sequence can be subjected to
the same analyses (described later) for DNA sequence. As we describe sequence
analysis methods, we will point out ways in which these methods differ for proteins
and DNA.

7.4.2 Mechanisms of Molecular Evolution
The discovery of DNA as the molecular basis of heredity and evolution made it
possible to understand the process of evolution in a whole new way. Darwin's theory
of evolution by natural selection describes the observable process of evolution and
speciation. However, it doesn't explain how information is passed from generation to
generation, nor does it explain the mechanisms that give rise to, or that limit,
variation within each generation.

The two halves of the double-helical DNA molecule serve as a template for
replication of the DNA molecule. Even though the molecular rules governing
replication of DNA are specific, replication doesn't always occur with perfect fidelity.
When a piece of DNA is replicated incorrectly and the error is not corrected by the
cell's repair machinery, it's called a mutation.

Mutations can occur in any part of an organism's DNA: in the middle of genes that
code for proteins or functional RNA molecules, in the middle of regulatory sequences
that govern when a gene is turned on, or out in the "middle of nowhere", in the

161

regions between gene sequences. Mutations can have dramatic effects on the
organism's phenotype (its visible or measurable characteristics) or they can have no
apparent effect. Over time—thousands or millions of years—mutations that are
beneficial or at least not harmful to a species can become fixed in the population,
meaning that the mutated form of the gene occurs with a certain frequency among
all individuals of a particular species. Over longer time scales, enough mutations may
accumulate that new species develop.

There are two classes of mutations: point mutations, in which a change affects a
single nucleotide in the DNA sequence; and segmental mutations, which can affect
anywhere from a few to many hundreds of adjacent nucleotides.

Point mutations usually result from a single mismatch, in which one nucleotide is
mispaired with the template DNA as a new complementary DNA strand is being built.
Point mutations become significant only if they occur in the middle of a coding region
or signal sequence, and then only if they cause a change in functionality. In coding
regions, point mutations can either be synonymous, meaning that the mutated
strand codes for the same amino acid as it did before the mutation occurred, or
nonsynonymous. The genetic code (which was shown back in Figure 2-3) is
degenerate; that is, several different three-letter combinations code for each amino
acid. The groups of codons which code for each amino acid are by no means random;
instead, nature has arranged a fail-safe mechanism in which several codons that
differ by only one nucleotide represent a single amino acid, thereby allowing a little
room for synonymous replication errors in DNA.

Segmental mutations, which can result in insertion or deletion of long stretches of
DNA, can occur by many different mechanisms, all of which involve mismatching of a
strand of DNA either with the wrong partner or with a part of itself. Segmental
mutations can result in duplications of whole genes or even large regions of
chromosomes; some genetic events can even result in the duplication of entire
genomes. Generated by gene and chromosome duplication, redundant copies of
genes can be repurposed (through a slow process of mutational trial and error) to
perform new functions in the cell. A detailed discussion of these mechanisms is given
in the excellent book Fundamentals of Molecular Evolution; see the Bibliography.

Both types of mutation leave traces in the evolutionary record, that is, in the DNA
sequences of living things. Since mutations tend to be preserved only if they are
functionally useful (or at least, not harmful), there is a tendency for functionally
important parts of sequences to be conserved (to remain constant throughout the
evolutionary process) while noncoding or nonfunctional sequences diverge wildly.
This tendency to conserve functionally important sequences is the basis for the whole
field of sequence analysis; it lets us draw evolutionary connections between genes
that are related in sequence.

By comparative study of DNA sequences, and on a larger scale, of whole genomes,
it's possible to develop quantitative methods for understanding when and how
mutational events occurred, as well as how and why they were preserved to survive
in existing species and populations. Genomics and bioinformatics—the production of
genome data and the development of tools for analyzing it—have made it possible to
examine the evolutionary record and make increasingly quantitative statements
about the evolutionary relationship of one species to another. Taxonomies can begin
to be based not merely on anatomy but on quantitative measurements of differences

162

in the genetic code. Both point mutations and segmental mutations are explicitly
modeled in the scoring schemes for comparison of protein and DNA sequences
discussed later in this chapter. Changes in the identity of the residue (nucleotide or
amino acid) at a given position in the sequence are scored using standard
substitution scores (for example, a positive score for a match and a negative score
for a mismatch) or substitution matrices. Insertions and deletions are scored with
penalties for gap opening and gap extension.

7.5 Genefinders and Feature Detection in DNA
Once a large chunk of DNA has been mapped and sequenced, the task of
understanding its function begins. In this section, we describe some programs that
search the sequence for genes and other biologically important features. A feature is
a sequence pattern with some functional significance, such as start and stop codons,
splice sites (in the case of eukaryotes), and sequences that are bound by proteins in
order to regulate gene expression. Some features can be found by searching for a
specific sequence, such as the restriction site cleaved by a given restriction enzyme.
Others, such as promoters and genes, aren't so easy to pick out. Analysis of single
DNA sequences in search of sequence features is a rapidly growing research area in
bioinformatics.

There are two reasons that genefinding and feature detection are such notoriously
difficult problems. First, there are a huge number of protein-DNA interactions, many
of which have not yet been experimentally characterized, and some of which differ
from organism to organism. More importantly, we don't always know what
constitutes a binding sequence. Current promoter detection algorithms yield about
20-40 false positives for each real promoter identified. Some proteins bind to specific
sequences; others are more flexible in their preference for attachment sites. To
complicate matters further, a protein can bind in one part of a chromosome but
affect a completely different region hundreds or thousands of base pairs away.

7.5.1 Predicting Gene Locations
Genefinders are programs that identify (or try to, anyway) all the open reading
frames in unannotated DNA. They use a variety of approaches to locate genes, but
the most successful combine content-based and pattern-recognition approaches.
Content-based methods for gene prediction take advantage of the fact that the
distribution of nucleotides in genes is different than in non-genes. The GRAIL family
of programs developed at Oak Ridge National Laboratories uses a neural network to
combine evidence from seven different statistical measures of DNA content (frame
bias, periodicities, fractal dimension, coding 6-tuples, in-frame 6-tuples, k-tuple
commonality, and repetitive 6-tuple words); subsequent versions measure additional
features to better exploit these different types of data. At each position in the DNA
sequence, the program weighs each type of information, integrates them, and comes
up with a score that represents the likelihood that the region in question is in an ORF
or an intergenic region. Pattern-recognition methods look for characteristic
sequences associated with genes (start and stop codons, promoters, splice sites) to
infer the presence and structure of a gene.

In isolation, each method goes only so far. You have a similar rate of success if you
try to identify human faces by looking for either a characteristic skin texture

163

(content) or the presence of a moustache (pattern), but not both. Not surprisingly,
the current generation of genefinders combine both methods with additional
knowledge, such as gene structure or sequences of other, known genes.

Some genefinders are accessible only though web interfaces, making the interaction
very straightforward: the sequence that needs to be examined for genes is
submitted to the program, it is processed, and the output is returned. On one hand,
this eliminates the need for installation and maintenance of the genefinder on your
system, and it provides a relatively uniform interface for the different programs. On
the other, if you plan to rely on the results of a genefinder, you should take the time
to understand underlying algorithm, find out if the model is specific for a given
species or family, and, in the case of content-based models, know which sequences
they are. The accuracy of a genefinder can be misleadingly high if it is trained on the
same sequence with which you test it.

Some commonly used programs in gene finding include Oak Ridge National Labs'
GRAIL, GENSCAN (developed by Chris Burge, now at MIT, and Samuel Karlin at
Stanford), PROCRUSTES (developed by Pavel Pevzner and coworkers), and GeneWise
(developed by Ewan Birney and Richard Durbin). GRAIL combines evidence from a
variety of signal and content information using a neural network. GENSCAN
combines information about content statistics with a probabilistic model of gene
structure. PROCRUSTES and GeneWise find open reading frames by translating the
DNA sequence and comparing the resulting protein sequence with known protein
sequences. PROCRUSTES compares potential ORFs with close homologs, while
GeneWise compares the gene against a single sequence or a model of an entire
protein family.

7.5.2 Feature Detection
In addition to their role in genefinder systems, feature-detection algorithms can be
used on their own to find patterns in DNA sequences. Frequently, these tools help
interpret freshly sequenced DNA or choose targets for designing PCR primers or
microarray oligomers. Some starting places for tools like these include the Center for
Biological Sequence Analysis at the Technical University of Denmark (which has
several web-based applications for finding intron-exon splice sites and transcription
start sites in eukaryotic DNA), the CodeHop server at the Fred Hutchinson Cancer
Research Center (which predicts PCR primers based on conserved protein
sequences), and the Tools collection at the European Bioinformatics Institute.

In addition to these special-purpose tools, another popular approach is to use motif
discovery programs that automatically find common patterns in sequences. We will
examine these programs in greater detail when we look at multiple sequence
analysis methods.

7.6 DNA Translation
Before a protein can be synthesized, its sequence must be translated from the DNA.
Translation of DNA sequence into protein sequence isn't conceptually or
computationally difficult. All that is required is the DNA sequence, a genetic code,
and a program that reads in one type of sequence and outputs the other.

164

Any DNA sequence can be translated in six possible ways. The sequence can be
translated backward and forward. Because each amino acid in a protein is specified
by three bases in the DNA sequence, there are three possible translations of any
DNA sequence in each direction: one beginning with the very first character in the
sequence, one beginning with the second character, and one beginning with the third
character.

Figure 7-6 shows "back-translation" of a protein sequence (shown on the top line)
into DNA, using the bacterial and plant plastid genetic code. As you can see, back-
translation of a protein sequence into DNA isn't unique. Each amino acid in the short
sequence shown can be represented by as many as six codons, and the possible
codons can be combined in many ways to produce not one, but hundreds of possible
coding sequences, even for a short peptide. However, note that nature has grouped
the codons "sensibly": alanine (A) is always specified by a "G-C-X" codon, arginine
(R) is specified either by a "C-G-X" codon or an "A-G-pyrimidine" codon, etc. This
reduces the number of potential sequences that have to be checked if you (for
example) try to write a program to compare a protein sequence to a DNA sequence
database.[1]

[1] The more computationally efficient solution to this problem is simply to translate the DNA
sequence database in all six reading frames.

Figure 7-6. Back-translation from a protein sequence

There are no markers in the DNA sequence to indicate where one codon ends and
the next one begins. Consequently, unless the location of the start codon is known
ahead of time, a double-stranded DNA sequence can be interpreted in any of six
ways: an open reading frame can start at nucleotide i, at i+1, or at i+2 on either the
observed or complementary strand. To account for this uncertainty, when a protein
is compared with a set of DNA sequences, the DNA sequences are translated into all
six possible amino acid sequences, and the protein query sequence is compared with
these resulting conceptual translations. This exhaustive translation is called a "six-
frame translation" and is illustrated in Figure 7-7.

Figure 7-7. A DNA sequence and its translation in three of six possible
reading frames

165

Because of the large number of codon possibilities for some amino acids, back-
translation of a protein into DNA sequence can result in an extremely large number
of possible sequences. However, codon usage statistics for different species are
available and can be used to suggest the most likely back-translation out of the
range of possibilities.

BLAST and FASTA dynamically translate query and database sequences so you don't
need to worry about translating a database before you do a sequence comparison.
However, in the event that you need to produce a six-frame translation of a single
DNA sequence or translate a protein back into a set of possible DNA sequences, and
you don't want to script it yourself, the Protein Machine server
(http://www.ebi.ac.uk/translate/) at the European Bioinformatics Institute (EBI) will
do it for you.

7.7 Pairwise Sequence Comparison
Comparison of protein and DNA sequences is one of the foundations of
bioinformatics. Our ability to perform rapid automated comparisons of sequences
facilitates everything from assignment of function to a new sequence, to prediction
and construction of model protein structures, to design and analysis of gene
expression experiments. As biological sequence data has accumulated, it has become
apparent that nature is conservative. A new biochemistry isn't created for each new
species, and new functionality isn't created by the sudden appearance of whole new
genes. Instead, incremental modifications give rise to genetic diversity and novel
function. With this premise in mind, detection of similarity between sequences allows
you to transfer information about one sequence to other similar sequences with
reasonable, though not always total, confidence.

Before you can make comparative statements about nucleic acid or protein
sequences, a sequence alignment is needed. The basic concept of selecting an
optimal sequence alignment is simple. The two sequences are matched up in an
arbitrary way. The quality of the match is scored. Then one sequence is moved with
respect to the other and the match is scored again, until the best-scoring alignment
is found.

What sounds simple in principle isn't at all simple in practice. Choosing a good
alignment by eye is possible, but life is too short to do it more than once or twice. An
automated method for finding the optimal alignment out of the thousands of

166

alternatives is clearly the right approach, but in order for the method to be
consistent and biologically meaningful, several questions must be answered. How
should alignments be scored? A scoring scheme can be as simple as +1 for a match
and -1 for a mismatch, but what is the best scoring scheme for the data? Should
gaps be allowed to open in the sequences to facilitate better matches elsewhere? If
gaps are allowed, how should they be scored? Given the correct scoring parameters,
what is the best algorithm for finding the optimal alignment of two sequences? And
when an alignment is produced, is it necessarily significant? Can an alignment of
similar quality be produced for two random sequences? Through the rest of this
section, we consider each of these questions in greater detail.

Figure 7-8 shows examples of three kinds of alignment. These are three pairwise
sequence alignments generated using a program called ALIGN. In each alignment,
the sequences being compared are displayed, one above the other, such that
matching residues are aligned. Identical matches are indicated with a colon (:)
between the matching residues, while similarities are indicated with a single dot (.).
Information about the alignment is presented at the top, including percent identity
(the number of identical matches divided by the length of the alignment) and score.
Finally, gaps in one sequence relative to another are represented by dashes (-) for
each position in that sequence occupied by a gap.

Figure 7-8. Three alignments: high scoring, low scoring but meaningful, and
random

167

The first alignment is a high-scoring one: it shows a comparison of two closely
related proteins (two hemoglobin molecules, one from a sea lamprey and one from a
hagfish). Compare that alignment with the second, a comparison of two distantly
related proteins (again, two hemoglobin molecules, in this case taken from lamprey
and rice). Cursory inspection shows fewer identical residues are shared by the
sequences in the low-scoring alignment than in the high-scoring one. Still, there are
several similarities or conservative changes—changes in which one amino acid has
been replaced by another, chemically similar residue. The third alignment is a
random alignment, a comparison between two unrelated sequences (the lamprey
hemoglobin and a human retinol binding protein). Notice that, in addition to the few
identities and conservative mutations between the two, large gaps have been opened
in both sequences to achieve this alignment. Gene families aren't likely to evolve in
this way, and given the lack of similarity between the sequences, you can conclude
that these proteins are unrelated.

168

In describing sequence comparisons, several different terms are commonly used.
Sequence identity, sequence similarity, and sequence homology are the most
important of these terms. Each means something slightly different, though they are
often casually used interchangeably.

Sequence identity refers to the occurrence of exactly the same nucleic acid or amino
acid in the same position in two aligned sequences. Sequence similarity is
meaningful only when possible substitutions are scored according to the probability
with which they occur. In protein sequences, amino acids of similar chemical
properties are found to substitute for each other much more readily than dissimilar
amino acids. These propensities are represented in scoring matrices that score
sequence alignments. Two amino acids are considered similar if one can be
substituted for another with a positive log odds score from a scoring matrix
(described in the next section).

Sequence homology is a more general term that indicates evolutionary relatedness
among sequences. It is common to speak of a percentage of sequence homology
when comparing two sequences, although that percentage may indicate a mixture of
identical and similar sites. Finally, sequence homology refers to the evolutionary
relatedness between sequences. Two sequences are said to be homologous if they
are both derived from a common ancestral sequence. The terms similarity and
homology are often used interchangeably to describe sequences, but, strictly
speaking, they mean different things. Similarity refers to the presence of identical
and similar sites in the two sequences, while homology reflects a stronger claim that
the two sequences share a common ancestor.

7.7.1 Scoring Matrices
What you really want to learn when evaluating a sequence alignment is whether a
given alignment is random, or meaningful. If the alignment is meaningful, you want
to gauge just how meaningful it is. You attempt to do this by constructing a scoring
matrix.

A scoring matrix is a table of values that describe the probability of a residue (amino
acid or base) pair occurring in an alignment. The values in a scoring matrix are
logarithms of ratios of two probabilities. One is the probability of random occurrence
of an amino acid in a sequence alignment. This value is simply the product of the
independent frequencies of occurrence of each of the amino acids. The other is the
probability of meaningful occurrence of a pair of residues in a sequence alignment.
These probabilities are derived from samples of actual sequence alignments that are
known to be valid.

In order to score an alignment, the alignment program needs to know if it is more
likely that a given amino acid pair has occurred randomly, or that it has occurred as
a result of an evolutionary event. The logarithm of the ratio of the probability of
meaningful occurrence to the probability of random occurrence is positive if the
probability of meaningful occurrence is greater, and negative if the probability of
random occurrence is greater. Because the scores are logarithms of probability
ratios, they can be meaningfully added to give a score for the entire sequence. The
more positive the score, the more likely the alignment is to be significant.

169

Figure 7-9 shows an example of a BLOSUM45 matrix, a popular substitution matrix
for amino acids.

Figure 7-9. The BLOSUM45 matrix, a popular substitution matrix for amino
acids

Substitution matrices for amino acids are complicated because they reflect the
chemical nature and frequency of occurrence of the amino acids. For example, in the
BLOSUM matrix, glutamic acid (E) has a positive score for substitution with aspartic
acid (D) and also with glutamine (Q). Both these substitutions are chemically
conservative. Aspartic acid has a sidechain that is chemically similar to glutamic acid,
though one methyl group shorter. On the other hand, glutamine is similar in size and
chemistry to glutamic acid, but it is neutral while glutamic acid is negatively charged.
Substitution scores for glutamic acid with residues such as isoleucine (I) and leucine
(L) are negative. These residues have neutral, nonpolar sidechains and are
chemically different from glutamic acid. The scores on the diagonal of the matrix
reflect the frequency of occurrence of each amino acid. For example, with a positive
score of 15, it is extremely unlikely that the alignment of a rare tryptophan (W) with
another tryptophan is coincidence, while the more common serine (S) has a positive
score of only 4 for a match with another serine. It's important to remember that
these scores are logarithms, which means that a match of two serines is far from
being mere coincidence.

Substitution matrices for bases in DNA or RNA sequence are very simple. By default,
the sequence alignment program BLAST uses the scheme of assigning a standard
reward for a match and a standard penalty for a mismatch, with no regard to overall
frequencies of bases. In most cases, it is reasonable to assume that A:T and G:C
occur in roughly equal proportions.

Commonly used substitution matrices include the BLOSUM and PAM matrices. When
using BLAST, you need to select a scoring matrix. Most automated servers select a
default matrix for you (usually something like BLOSUM62), and if you're just doing a
quick sequence search, it's fine to accept the default.

170

BLOSUM matrices are derived from the Blocks database, a set of ungapped
alignments of sequence regions from families of related proteins. A clustering
approach sorts the sequences in each block into closely related groups, and the
frequencies of substitutions between these within a family derives the probability of a
meaningful substitution. The numerical value (e.g., 62) associated with a BLOSUM
matrix represents the cutoff value for the clustering step. A value of 62 indicates that
sequences were put into the same cluster if they were more than 62% identical. By
allowing more diverse sequences to be included in each cluster, lower cutoff values
represent longer evolutionary time scales, so matrices with low cutoff values are
appropriate for seeking more distant relationships. BLOSUM62 is the standard matrix
for ungapped alignments, while BLOSUM50 is more commonly used when generating
alignments with gaps.

Point accepted mutation (PAM) matrices are scaled according to a model of
evolutionary distance from alignments of closely related sequences. One PAM "unit"
is equivalent to an average change in 1% of all amino acid positions. The most
commonly used PAM matrix is PAM250. However, comparison of results using PAM
and BLOSUM matrices suggest that BLOSUM matrices are better at detecting
biologically significant similarities.

7.7.2 Gap Penalties
DNA sequences change not only by point mutation, but by insertion and deletion of
residues as well. Consequently, it is often necessary to introduce gaps into one or
both of the sequences being aligned to produce a meaningful alignment between
them. Most algorithms use a gap penalty to represent the validity of adding a gap in
an alignment.

The addition of a gap has to be costly enough, in terms of the overall alignment
score, that gaps will open only where they are really needed and not all over the
sequence. Most sequence alignment models use affine gap penalties, in which the
cost of opening a gap in a sequence is different from the cost of extending a gap that
has already been started. Of these two penalties—-the gap opening penalty and the
gap extension penalty—-the gap opening penalties tend to be much higher than the
associated extension penalty. This tendency reflects the tendency for insertions and
deletions to occur over several residues at a time.

Gap penalties are intimately tied to the scoring matrix that aligns the sequences: the
best pair of gap opening and extension penalties for one scoring matrix doesn't
necessarily work with another. Scores of -11 for gap opening and -1 for gap
extension are commonly used in conjunction with the BLOSUM 62 matrix for gapped-
BLAST, while BLOSUM50 uses a -12/-1 penalty.

7.7.3 Dynamic Programming
Dynamic programming methods are a general class of algorithms that are often seen
both in sequence alignment and other computational problems. They were first
described in the 1950s by Richard Bellman of Princeton University as a general
optimization technique. Dynamic programming seems to have been introduced[2] to
biological sequence comparison by Saul Needleman and Christian Wunsch, who
apparently were unaware of the similarity between their method and Bellman's.

171

[2] Or, as mathematicians might say, "rediscovered." Because computational biology combines
research from so many different areas, this independent discovery happens often and is only
noticed later.

As we mentioned, dynamic programming algorithms solve optimization problems,
problems in which there are a large number of possible solutions, but only one (or a
small number of) best solutions. A dynamic programming algorithm finds the best
solution by first breaking the original problem into smaller subproblems and then
solving. These pieces of the larger problem have a sequential dependency; that is,
the fourth piece can be solved only with the answer to the third piece, the third can
be solved only with the answer to the second, and so on. Dynamic programming
works by first solving all these subproblems, storing each intermediate solution in a
table along with a score, and finally choosing the sequence of solutions that yields
the highest score. The goal of the dynamic programming algorithm is to maximize
the total score for the alignment. In order to do this, the number of high-scoring
residue pairs must be maximized and the number of gaps and low-scoring pairs must
be minimized.

In sequence comparison, the overall problem is finding the best alignment between
two sequences. This problem is broken down into subproblems of aligning each
residue from one sequence with each residue from the other. The solution is a
decision as to whether the residues should be aligned with each other, a gap should
be introduced in the first sequence, or a gap should be introduced in the second
sequence. Each high-scoring choice rules out the other two low-scoring possibilities,
so that if information about the accumulated scores is stored at each step, every
possible alignment need not be evaluated.

The algorithm uses an (m x n) matrix of scores (illustrated in Figure 7-10) in which
m and n are the lengths of the sequences being aligned. Starting with the alignment
of a gap against itself (which is given the initial score zero), the algorithm fills in the
matrix one row at a time. At each position in the matrix, the algorithm computes the
scores that result for each of its three choices, selects the one that yields the highest
score, then stores a pointer at the current position to the preceding position that was
used to arrive at the high score. When every position in the matrix has been filled in,
a traceback step is performed, and the highest-scoring path along the pointers is
followed back to the beginning of the alignment.

Figure 7-10. A matrix of scores comparing two sequences; continuous high-
scoring matches are highlighted

172

7.7.4 Global Alignment
One alignment scenario you may encounter is the alignment of two sequences along
their whole length. The algorithm for alignment of whole sequences is called the
Needleman-Wunsch algorithm. In this scenario, an optimal alignment is built up from
high-scoring alignments of subsequences, stepping through the matrix from top left
to bottom right. Only the best-scoring path can be traced through the matrix,
resulting in an optimal alignment.

7.7.4.1 Using ALIGN to produce a global sequence alignment

Now that we have seen the theory behind the global alignment of two sequences,
let's examine a program that implements this algorithm. ALIGN is a simple utility for
computing global alignments. It is part of the FASTA software distribution, described
later in this chapter. The programs in the FASTA distribution are easily run from the
Unix command line, although many of them have been incorporated into the SDSC
Biology Workbench web-based sequence analysis software, if you prefer to access
them through a point-and-click interface. The FASTA programs compile easily under
Linux; however, once they are compiled, you need to link them into your
/usr/local/bin directory or some other sensible location by hand.

To run ALIGN and any of the other FASTA programs, you need sequence data in
FASTA format. This is one of the most frequently used sequence formats and
probably the simplest. To use ALIGN, each of the sequences you are aligning should
be in a separate file.

A sequence in FASTA format[3] looks like this:
[3] Also known as Pearson format, after the author of the FASTA software, William Pearson.

>2HHB:A HEMOGLOBIN (DEOXY) - CHAIN A
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK
KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA

173

VHASLDKFLASVSTVLTSKYR

The FASTA format is very flexible, and it is one of the most commonly used formats
for sequence analysis programs. A FASTA file contains one or more records in FASTA
format, separated by empty lines. Each record consists of a human-readable
comment followed by a nucleotide or protein sequence. The comment appears in the
first line of the record; it must begin with a greater-than (>) symbol followed by one
or more identifiers for the sequence. The comment may contain information about
the molecule represented by the sequence, such as the protein or gene name and
source organism. In the previous example, the identifier is a PDB code (2HHB),
followed by a description of the sequence (the A chain of a deoxyhemoglobin
protein). The remainder of the record contains the sequence itself, divided into
separate lines by line breaks. Lines are usually 60 characters long, but the format
doesn't specify a line length. Programs that take FASTA data as input (such as
ALIGN) usually make allowances for FASTA's free-form nature. Still, it's a good
practice to check the program's documentation to make sure that your data is
appropriately formatted.

To use ALIGN, simply enter align at the command prompt. You are then prompted
for sequence filenames. Results are sent to standard output. The ASCII format for
pairwise alignments that is produced by FASTA is still commonly used, although
there is a trend toward use of more easily parsed alignment formats:
Output scoring matrix: BLOSUM50, gap penalties: -12/-2 43.2% identity;
Global alignment score: 374

10 20 30 40 50
2HHB_A V-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSA

: :.: .:. : : :::: .. : :.::: :... .: :. .: : ::: :.
2HHB:B VHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNP

10 20 30 40 50
60 70 80 90 100 110

2HHB_A QVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHL
.::.::::: :.....::.:..::.:: ::.::: ::.::.. :. .:: :.

2HHB:B KVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHF
60 70 80 90 100 110

120 130 140
2HHB_A PAEFTPAVHASLDKFLASVSTVLTSKYR

:::: :.:. .: .:.:...:. ::.
2HHB:B GKEFTPPVQAAYQKVVAGVANALAHKYH

120 130 140

The FASTA distribution contains a sample HTML form and CGI script for use with the
program LALIGN, a pairwise local alignment program. The script can be modified to
work with the ALIGN program if a web-based interface is desired.

7.7.5 Local Alignment
The most commonly used sequence alignment tools rely on a strategy called local
alignment. The global alignment strategy discussed earlier assumes that the two
sequences to be aligned are known and are to be aligned over their full length. In
the scenarios that are encountered most often with sequence alignment, however,

174

you are either searching with one sequence against a sequence database looking for
unknown sequences, or searching a very long DNA sequence, such as part of a
genome, for partial segments that match a query sequence. In protein or gene
sequences that do have some evolutionary relatedness, but which have diverged
significantly from each other, short homologous segments may be all the evidence of
sequence homology that remains.

The version of the dynamic programming algorithm that performs local alignment of
two sequences is known as the Smith-Waterman algorithm. Named for its inventors,
Dr. Temple Smith and Dr. Michael Waterman, this algorithm is similar to the
Needleman-Wunsch algorithm except that an additional choice is allowed when
tracing through the matrix. A local alignment isn't required to extend from beginning
to end of the two sequences being aligned. If the cumulative score up to some point
in the sequence is negative, the alignment can be abandoned and a new alignment
started. The alignment can also end anywhere in the matrix.

7.7.5.1 Tools for local alignment

One of the most frequently reported implementations of the Smith-Waterman
algorithm for database searching is the program SSEARCH, which is part of the
FASTA distribution described later. LALIGN, also part of the FASTA package, is an
implementation of the Smith-Waterman algorithm for aligning two sequences.

7.8 Sequence Queries Against Biological Databases
A common application of sequence alignment is searching a database for sequences
that are similar to a query sequence. In these searches, an alignment of a sequence
hundreds or thousands of residues long is matched against a database of at least
tens of thousands of comparably sized sequences. Using dynamic programming-
based methods, this isn't very practical unless special-purpose hardware is available.
Instead, for routine searches, special heuristic database-searching methods are
used. Heuristic methods exploit knowledge about sequences and alignment statistics
to make these large-scale searches efficient and practical. While they don't
guarantee optimal alignments, they make sensitive searches of large sequence
databases possible. In this section, we describe BLAST and FASTA, two commonly
used database-searching programs.

7.8.1 Local Alignment-Based Searching Using BLAST
By far, the most popular tool for searching sequence databases is a program called
BLAST (Basic Local Alignment Search Tool). BLAST is the algorithm at the core of
most online sequence search servers.[4] It performs pairwise comparisons of
sequences, seeking regions of local similarity, rather than optimal global alignments
between whole sequences.

[4] To give you perspective on how long the common tools of bioinformatics have been
available, the original BLAST paper by Altschul et al. was published in the Journal of Molecular
Biology in October 1990.

BLAST can perform hundreds or even thousands of sequence comparisons in a
matter of minutes. And in less than a few hours, a query sequence can be compared
to an entire database to find all similar sequences. BLAST is so popular for this

175

purpose that it's become a verb in the computational biology community, as in "I
BLASTed this sequence against GenBank and came up with three matches."

7.8.1.1 The BLAST algorithm

Local sequence alignment searching using a standard Smith-Waterman algorithm is a
fairly slow process. The BLAST algorithm, which speeds up local sequence alignment,
has three basic steps. First, it creates a list of all short sequences (called words in
BLAST terminology) that score above a threshold value when aligned with the query
sequence. Next, the sequence database is searched for occurrences of these words.
Because the word length is so short (3 residues for proteins, 11 residues for nucleic
acids), it's possible to search a precomputed table of all words and their positions in
the sequences for improved speed. These matching words are then extended into
ungapped local alignments between the query sequence and the sequence from the
database. Extensions are continued until the score of the alignment drops below a
threshold. The top-scoring alignments in a sequence, or maximal-scoring segment
pairs (MSPs), are combined where possible into local alignments. Originally, BLAST
searched only for ungapped alignments. However, new additions to the BLAST
software package that do search for gapped alignments have since been introduced.

7.8.1.2 NCBI BLAST and WU-BLAST

There are two implementations of the BLAST algorithm: NCBI BLAST and WU-BLAST.
Both implementations can be used as web services and as downloadable software
packages. NCBI BLAST is available from the National Center for Biotechnology
Information (NCBI), while WU-BLAST is an alternate version that grew out of NCBI
BLAST 1.4 and is developed and maintained by Dr. Warren Gish and coworkers at
Washington University.

NCBI BLAST is the more commonly used of the two. The most recent versions of this
program have focused on the development of methods for comparing multiple-
sequence profiles (see Chapter 8). WU-BLAST, on the other hand, has developed a
different system for handling gaps as well as a number of features (such as filtering
for repeats) that are useful for searching genome sequences. Consequently, TIGR,
Stanford's yeast genome server, Berkeley's Drosophila genome project, and others
use WU-BLAST 2.0 as the sequence-comparison tool for searching their genome
sequence data via the Web. As of this writing, WU-BLAST 2.0, the most recent
version of the software, is copyrighted. NCBI BLAST and WU-BLAST's previous
version, 1.4, are both in the public domain and freely available to all researchers.
Because of its ubiquity we focus on NCBI BLAST in the following section, but WU-
BLAST is an alternative. For more information on these flavors of BLAST see the
NCBI web site at http://www.ncbi.nlm.nih.gov/BLAST, or the WU-BLAST web site at
http://blast.wustl.edu.

7.8.1.3 What do the various BLAST programs do?

Frequent users of BLAST can also download and install BLAST binaries on their own
machines. BLAST installs easily on a Linux system. Simply create a new directory
(e.g., /usr/local/blast), move the archive into it, and extract. Here are the four main
executable programs in the BLAST distribution:

[blastall]

http://www.ncbi.nlm.nih.gov/BLAST
http://blast.wustl.edu

176

Performs BLAST searches using one of five BLAST programs: blastp, blastn,
blastx, tblastn, or tblastx

[blastpgp]

Performs searches in PSI-BLAST or PHI-BLAST mode

[bl2seq]

Performs a local alignment of two sequences

[formatdb]

Converts a FASTA-format flat file sequence database into a BLAST database

blastall encompasses all the major options for ungapped and gapped BLAST
searches. A full list of its command-line arguments can be displayed with the
command blastall - :

[-p]

Program name. Its options include:

blastp

Protein sequence (PS) query versus PS database

blastn

Nucleic acid sequence (NS) query versus NS database

blastx

NS query translated in all six reading frames versus PS database

tblastn

PS query versus NS database dynamically translated in all six reading frames

tblastx

Translated NS query versus translated NS database—computationally
intensive

[-d]

Database name. Each indexed database consists of several files; the name is
the common portion of those filenames.

177

[-i]

Query sequence filename. Defaults to standard input if not specified.

[-e]

Expectation value cutoff. (See Section 7.8.1.5.)

[-m]

Alignment view. Its options include:

0

Pairwise

1

Master-slave, show identities

2

Master-slave, no identities

3

Flat master-slave, show identities

4

Flat master-slave, no identities

5

Master-slave, no identities, blunt ends

6

Flat master-slave, no identities, blunt ends

[-o]

Output file name. Defaults to standard output if not specified.

[-G]

Gap opening penalty. Defaults to 11 (for BLOSUM63 matrix).

[-E]

178

Gap extension penalty. Defaults to 1 (for BLOSUM63 matrix).

[-q]

Nucleotide mismatch penalty. blastn only. Defaults to -3.

[-r]

Reward for nucleotide match. blastn only. Defaults to 1.

[-b]

Number of alignments to show.

[-g]

Perform gapped alignment. T/F. Unavailable with tblastx.

[-M]

Scoring matrix. Defaults to BLOSUM62.

[-T]

Produce HTML output. T/F. Defaults to F.

These are the command-line options you are most likely to use, but there are a large
number of other options available. As you become familiar with BLAST, you may
want to learn to use them.

blastpgp allows you to use two new BLAST modes: PHI-BLAST (Pattern Hit Initiated
BLAST) and PSI-BLAST (Position Specific Iterative BLAST). PHI-BLAST uses protein
motifs, such as those found in PROSITE and other motif databases, to increase the
likelihood of finding biologically significant matches. PSI-BLAST uses an iterative
alignment procedure to develop position-specific scoring matrices, which increases
its capability to detect weak pattern matches. Both methods are discussed further
when we get to multiple sequence analysis in Chapter 8.

bl2seq allows the comparison of two known sequences using the blastp or blastn
programs. Most of the command-line options for bl2seq are similar to those for
blastall.

7.8.1.4 Building a local database with formatdb

Usage: formatdb -i araseed.nt -p F -o T

Although BLAST is available on many web servers, one of the benefits of installing
and using BLAST locally is the ability to create your own sequence databases. For
instance, you may have a set of sequences that aren't yet published or publicly

179

distributed. They're not in the GenBank database, so if you can't run BLAST on your
own machine, how do you search them?

The program formatdb accepts an input sequence database either in FASTA format
or in NCBI's ASN.1 format (described in Chapter 12). On the program command line
it is necessary to specify the input filename, whether the input is a protein or nucleic
acid sequence, and whether you want to create indexes for the database or not.
There are other command-line options available, which can be viewed by trying to
run formatdb with no command-line options specified.

The files created are:
araseed.nt.nhr
araseed.nt.nin
araseed.nt.nsd
araseed.nt.nsi
araseed.nt.nsq

7.8.1.5 Evaluating BLAST results

A BLAST search in a sequence database can produce dozens or hundreds of
candidate alignments. Out of these alignments, how can you tell which are really
significantly homologous, and which are merely the best matches between unrelated
sequences? BLAST provides three related pieces of information that allow you to
interpret its results: raw scores, bit scores, and E-values.

The raw score for a local sequence alignment is the sum of the scores of the
maximal-scoring segment pairs (MSPs) that make up the alignment. Because of
differences between scoring matrices, raw scores aren't always directly comparable.
Bit scores are raw scores that have been converted from the log base of the scoring
matrix that creates the alignment to log base 2. This rescaling allows bit scores to be
compared between alignments.

E-values provide information about the likelihood that a given sequence alignment is
significant. An alignment's E-value indicates the number of alignments one expects
to find with a score greater than or equal to the observed alignment's score in a
search against a random database. Thus, a large E-value (5 or 10) indicates that the
alignment probably has occurred by chance, and that the target sequence has been
aligned to an unrelated sequence in the database. E-values of 0.1 or 0.05 are
typically used as cutoffs in sequence database searches. Using a larger E-value cutoff
in a database search allows more distant matches to be found, but it also results in a
higher rate of spurious alignments. Of the three, E-values are the values most often
reported in the literature.

There is a limit beyond which sequence similarity becomes uninformative about the
relatedness of the sequences being compared. This limit is encountered below
approximately 25% sequence similarity for protein sequences of normal length,
although research continues to push at this boundary. In the case of protein
sequences with low sequence similarity that are still believed to be related, structural
analysis techniques may provide evidence for such a relationship. Where structure is
unknown, sequences with low similarity are categorized as unrelated, but that may

180

mean only that the evolutionary distance between sequences is so great that a
relationship can't be detected.

7.8.2 Local Alignment Using FASTA
Another heuristic method for local sequence alignment is the FASTA algorithm.
FASTA predates BLAST, and it is still actively maintained by Dr. William Pearson at
the University of Virginia. Like BLAST, it is available both as a service over the Web
and as a downloadable set of programs. In this section, we describe the current
version of the FASTA algorithm and some of the programs included in the FASTA
distribution.

7.8.2.1 The FASTA algorithm

FASTA first searches for short sequences (called ktups)[5] that occur in both the query
sequence and the sequence database. Then, using the BLOSUM50 matrix, the
algorithm scores the 10 ungapped alignments that contain the most identical ktups.
These ungapped alignments are tested for their ability to be merged into a gapped
alignment without reducing the score below a threshold. For those merged
alignments that score over the threshold, an optimal local alignment of that region is
then computed, and the score for that alignment (called the optimized score) is
reported.

[5] An abbreviation for k tuples, or ordered sequences of k residues.

FASTA ktups are shorter than BLAST words, typically 1 or 2 for proteins, and 4 or 6
for nucleic acids. Lower ktup values result in slower but more sensitive searches,
while higher ktup values yield faster searches with fewer false positives.

7.8.2.2 The FASTA programs

The FASTA distribution contains search programs that are analogous to the main
BLAST modes, with the exception of PHI-BLAST and PSI-BLAST, as well as programs
for global and local pairwise alignment and other useful functions. The FASTA
programs listed here all compile easily on a Linux system:

[fasta]

Compares a protein sequence against a protein database (or a DNA sequence
against a DNA database) using the FASTA algorithm

[ssearch]

Compares a protein sequence against a protein database (or DNA sequence
against a DNA database) using the Smith-Waterman algorithm

[fastx /fasty]

Compares a DNA sequence against a protein database, performing
translations on the DNA sequence

181

[tfastx /tfasty]

Compares a protein sequence against a DNA database, performing
translations on the DNA sequence database

[align]

Computes the global alignment between two DNA or protein sequences

[lalign]

Computes the local alignment between two DNA or protein sequences

As of this writing, all these programs except ALIGN and LALIGN are available in the
FASTA 3.3 package; for now, ALIGN and LALIGN are available only in the FASTA 2
distribution.

7.9 Multifunctional Tools for Sequence Analysis
Several research groups and companies have assembled web-based interfaces to
collections of sequence tools. The best of these have fully integrated tools, public
databases, and the ability to save a record of user data and activities from one use
to another. If you're searching for matches to just one or a few sequences and you
want to search the standard public databases, these portals can save you a lot of
time while providing most of the functionality and ease of use of a commercial
sequence analysis package. In some cases, you'll have to pay for a license or
subscription to access the full functionality of these sites; others are freely
accessible.

7.9.1 NCBI SEALS
The NCBI SEALS project aims to develop a Perl-based command-line environment for
Systematic Analysis of Lots of Sequences. SEALS is far from a fully automated
genome analysis tool, and it isn't intended to be. What SEALS does provide is an
enhancement to the command-line environment on Unix systems. It is composed of
a large suite of scripts with a variety of useful functions: converting file formats,
manipulating BLAST results and FASTA files, database retrieval, piping files into
Netscape, and a host of other features that make your data easier to look at without
requiring a resource-sucking GUI. SEALS runs on Unix systems and is probably most
useful for those who are already Unix aficionados. Before you write a script to
process a lot of sequences, check to see if the process you want has been
implemented in SEALS.

7.9.2 The Biology Workbench
The San Diego Supercomputing Center offers access to sequence-analysis tools
through the Biology Workbench. This resource has been freely available to academic
users in one form or another since 1995. Users obtain a login and password at the
SDSC site, and work sessions and data can be saved securely on the server.

182

The Biology Workbench offers keyword and sequence-based searching of nearly 40
major sequence databases and over 25 whole genomes. Both BLAST and FASTA are
implemented as search and alignment tools in the Workbench, along with several
local and global alignment tools, tools for DNA sequence translation, protein
sequence feature analysis, multiple sequence alignment, and phylogenetic tree
drawing. The Workbench group has not yet implemented profile tools, such as MEME,
HMMer, or sequence logo tools, although PSI-BLAST is available for sequence
searches.

Although its interface can be somewhat cumbersome, involving a lot of window
scrolling and button clicking, the Biology Workbench is still the most comprehensive,
convenient, and accessible of the web-based toolkits. One of its main benefits is that
many sequence file formats are accepted and translated by the software. Users of
the Workbench need never worry about file type incompatibility and can move
seamlessly from keyword-based database search, to sequence-based search, to
multiple alignment, to phylogenetic analysis.

7.9.3 DoubleTwist
Another entry into the sequence analysis portal arena is DoubleTwist at
http://doubletwist.com. This site allows you to submit a sequence for comparison to
multiple databases using BLAST. It also provides "agents" that monitor databases for
new additions that match a submitted sequence and automatically notifies the user.
These services, as well as access to the EcoCyc pathways database and to an online
biology research protocols database, are free with registration at the site at the time
of this writing.

Chapter 8. Multiple Sequence Alignments,
Trees, and Profiles
In Chapter 7, we introduced the idea of using sequence alignment to find and
compare pairs of related sequences. Biologically interesting problems, however,
often involve comparing more than two sequences at once. For example, a BLAST or
FASTA search can yield a large number of sequences that match the query. How do
you compare all these resulting sequences with each other? In other words, how can
you examine these sequences to understand how they are related to one another?

One approach is to perform pairwise alignments of all pairs of sequences, then study
these pairwise alignments individually. It's more efficient (and easier to
comprehend), however, if you compare all the sequences at once, then examine the
resulting ensemble alignment. This process is known as multiple sequence
alignment. Multiple sequence alignments can be used to study groups of related
genes or proteins, to infer evolutionary relationships between genes, and to discover
patterns that are shared among groups of functionally or structurally related
sequences. In this chapter, we introduce some tools for creating and interpreting
multiple sequence alignments and describe some of their applications, including
phylogenetic inference and motif discovery. Phylogenetic inference and motif
discovery are rooted in evolutionary theory, so before we dive into a discussion of
that area of bioinformatics, let's take a minute to review the history and theory of
evolution.

http://doubletwist.com

183

8.1 The Morphological to the Molecular
In order to ground our discussion of the details of multiple sequence alignment, let's
take another brief look at evolution. One of the goals of biology has been the
creation of a taxonomy for living things, a method of organizing species in terms of
their relationships to one another. Early biologists classified species solely according
to their morphology—the physical appearance of the organism—and later, as
dissection became a more common practice, their anatomy.

Naturalists also discovered fossils of creatures that didn't resemble anything alive at
the time, but were thought to have once been living things. This evidence introduced
the possibility that life on Earth had changed over time. It also suggested that the
interrelationship between species isn't static, but rather is the result of an
evolutionary process. As understanding of the geophysical processes of the planet
improved, the amount of time required for such changes to occur became clearer. It
is now widely accepted by scientists that life on Earth is approximately 3.5 billion
years old. Fossil records of single-celled organisms resembling bacteria, with an
estimated age of 3.5 billion years, have been found and catalogued.

The evolutionary theory that was eventually accepted by most biologists was that of
Charles Darwin. Darwin proposed that every generation of living creatures has some
variability. The individuals whose variations predispose them to survive in their
environment are the ones who reproduce most successfully and pass on their traits
in greater numbers. In light of this theory, it has been hypothesized that the
diversity of life forms on Earth is due to divergence, perhaps even from one common
ancestral unicellular organism, to fill various biological niches.

Molecular evolution extends the concept of evolution to the level of DNA and protein
sequences. Although the replication of DNA sequence is a very accurate process,
small replication errors accumulate over time, along with radiation damage and other
mutations or alterations of the genomic sequence. Instead of evolutionary pressure
selecting organisms based on morphological traits, selection occurs at the level of
mutations. Consequently, the only mutations observed in genes from healthy
organisms are those that don't result in the organisms' death.

Because these changes between gene sequences are incremental, we can take
homologous genes—genes with common evolutionary origin and related function—
from a number of divergent organisms and compare them by aligning identical or
similar residues. This comparison of multiple sequences shows which regions of a
gene (or its derived protein) are sensitive to mutation and which are tolerant of
having one residue replaced by another. Thus, we can develop hypotheses about the
molecular events underlying the evolution of these sequences. Many bioinformatics
methods, including pairwise sequence comparison and sequence database searching,
are based on this observation that homologous genes have similar sequences.

In considering sequence similarity, there is one additional wrinkle to bear in mind:
the difference between orthologs and paralogs. The chemical processes of molecular
evolution are responsible for more than just giving rise to species differences.
Evolutionary change can occur within the genome of a single species as well.
Orthologs are genes that are evolutionarily related, share a function, and have
diverged by speciation. Paralogs, on the other hand, have a common ancestor but
have diverged by gene duplication and no longer have a common functional role. In

184

other words, orthologs have the same function but occur in different species, while
paralogs exist in the same genome but have different functions. A sequence
database search may return both orthologs and paralogs. Depending on the
objectives of your study, you probably will not want to treat them all as members of
the same set.

8.2 Multiple Sequence Alignment
Multiple sequence alignment techniques are most commonly applied to protein
sequences; ideally they are a statement of both evolutionary and structural similarity
among the proteins encoded by each sequence in the alignment. We know that
proteins with closely related functions are similar in both sequence and structure
from organism to organism, and that sequence tends to change more rapidly than
structure in the course of evolution. In multiple alignments generated from sequence
data alone, regions that are similar in sequence are usually found to be
superimposable in structure as well.

With a detailed knowledge of the biochemistry of a protein, you can create a multiple
alignment by hand. This is a painstaking process, however. The challenge of
automatic alignment is that it is hard to define exactly what an optimal multiple
alignment is, and impossible to set a standard for a single correct multiple
alignment. In theory, there is one underlying evolutionary process and one
evolutionarily correct alignment to be generated from any group of sequences.
However, the differences between sequences can be so great in parts of an
alignment that there isn't an apparent, unique solution to be found by an alignment
algorithm. Those same divergent regions are often structurally unalignable as well.
Most of the insight that we derive from multiple alignments comes from analyzing
the regions of similarity, not from attempting to align the very diverged regions.

The dynamic programming algorithm used for pairwise sequence alignment can
theoretically be extended to any number of sequences. However, the time and
memory requirements of this algorithm increase exponentially with the number of
sequences. Dynamic programming alignment of two sequences takes seconds.
Alignment of four relatively short sequences takes a few hours. Beyond that, it
becomes impractical to align sequences this way. The program MSA is an
implementation of an algorithm that reduces the complexity of the dynamic
programming problem for multiple sequences to some extent. It can align about
seven relatively short (200 -300) protein sequences in a reasonable amount of time.
However, MSA is of little use when comparing large numbers of sequences.

8.2.1 Progressive Strategies for Multiple Alignment
A common approach to multiple sequence alignment is to progressively align pairs of
sequences. The general progressive strategy can be outlined as follows: a starting
pair of sequences is selected and aligned, then each subsequent sequence is aligned
to the previous alignment. Like the Needleman-Wunsch and Smith-Waterman
algorithms for sequence alignment, progressive alignment is an instance of a
heuristic algorithm. Specifically, it is a greedy algorithm. Greedy algorithms
decompose a problem into pieces, then choose the best solution to each piece
without paying attention to the problem as a whole. In the case of progressive

185

alignment, the overall problem (alignment of many sequences) is decomposed into a
series of pairwise alignment steps.

Because it is a heuristic algorithm, progressive alignment isn't guaranteed to find the
best possible alignment. In practice, however, it is efficient and produces biologically
meaningful results. Progressive alignment methods differ in several respects: how
they choose the initial pair of sequences to align, whether they align every
subsequent sequence to a single cumulative alignment or create subfamilies, and
how they score individual alignments and alignments of individual sequences to
previous alignments.

8.2.2 Multiple Alignment with ClustalW
One commonly used program for progressive multiple sequence alignment is
ClustalW. The heuristic used in ClustalW is based on phylogenetic analysis. First, a
pairwise distance matrix for all the sequences to be aligned is generated, and a guide
tree is created using the neighbor-joining algorithm. Then, each of the most closely
related pairs of sequences—the outermost branches of the tree—are aligned to each
other using dynamic programming. Next, each new alignment is analyzed to build a
sequence profile. Finally, alignment profiles are aligned to each other or to other
sequences (depending on the topology of the tree) until a full alignment is built.

This strategy produces reasonable alignments under a range of conditions. It's not
foolproof; for distantly related sequences, it can build on the inaccuracies of pairwise
alignment and phylogenetic analysis. But for sequence sets with some recognizably
related pairs, it builds on the strengths of these methods. Pairwise sequence
alignment by dynamic programming is very accurate for closely related sequences
regardless of which scoring matrix or penalty values are used. Phylogenetic analysis
is relatively unambiguous for closely related sequences. Using multiple sequences to
create profiles increases the accuracy of pairwise alignment for more distantly
related sequences.

There are many parameters involved in multiple sequence alignment. There are, of
course, scoring matrices and gap penalties associated with the pairwise alignment
steps. In addition, there are weighting parameters that alter the scoring matrix used
in sequence-profile and profile-profile alignments. In ClustalW, these are set from
the Multiple Alignment submenu or the Profile Structure Alignments submenu. In
ClustalX, they are set from the Alignment pulldown menu.

The pairwise alignment parameters are familiar and have the same meaning in
multiple alignment as they do in pairwise alignment. The multiple alignment
parameters include gap opening and gap extension penalties for the multiple
alignment process—to be used when fine-tuning alignments—and a maximum
allowable delay, in terms of sequence length, for the start of divergent sequences at
the beginning of the alignment.

One of ClustalW's heuristics is that, in protein sequence alignment, different scoring
matrices are used for each alignment based on expected evolutionary distance. If
two sequences are close neighbors in the tree, a scoring matrix optimized for close
relationships aligns them. Distant neighbors are aligned using matrices optimized for
distant relationships. Thus, when prompted to choose a series of matrices in the
Multiple Alignment Parameters menu, it means just that: use BLOSUM62 for close

186

relationships and BLOSUM45 for more distant relationships, rather than the same
scoring matrix for all pairwise alignments.

Another heuristic that ClustalW uses is scalable gap penalties for protein profile
alignments. A gap opening next to a conserved hydrophobic residue can be penalized
more heavily than a gap opening next to a hydrophilic residue. A gap opening too
close to another gap can be penalized more heavily than an isolated gap. These
parameters are set in the Protein Gap Parameters menu.

Although ClustalW is run from the Unix command line, it is menu-driven and doesn't
rely on command-line options. To start the program, you can simply type clustalw,
and a menu of options is presented:
**
******** CLUSTAL W (1.8) Multiple Sequence Alignments ********
**

1. Sequence Input From Disc
2. Multiple Alignments
3. Profile / Structure Alignments
4. Phylogenetic trees

S. Execute a system command
H. HELP
X. EXIT (leave program)

This menu, along with subsequent menus that appear after you input your
sequences, guides you through the use of ClustalW in a fairly straightforward
fashion. Alignments are written in a plain-text format.

While ClustalW is simple to install and use on a Linux workstation, ClustalX, the X
Windows-based graphical user interface for ClustalW, isn't so easy to compile.
However, ClustalX runs in its own X window, has pulldown menus, and allows
viewing and plotting of multiple sequence alignments in a color-coded format. It also
allows you to append sequences to an alignment one at a time, and to produce color
PostScript output of specified sequence ranges in an alignment from different files, if
desired, along with other convenient features. To install ClustalX on a Linux machine,
you need:

· The ClustalX binaries
· The NCBI software toolkit source distribution
· The LessTif libraries

The first thing you need to do is install the LessTif libraries. This distribution is
extremely easy to work with. The LessTif libraries are available from
http://www.lesstif.org and may also be available within your Linux distribution. The
NCBI Toolkit (available from http://www.ncbi.nlm.nih.gov) should compile
completely as long as your LessTif libraries are installed in /usr/X11R6/lib. If the
NCBI Toolkit installation produces the file libvibrant.a, the command clustalx will
work.

8.2.3 Viewing and Editing Alignments with Jalview

http://www.lesstif.org
http://www.ncbi.nlm.nih.gov

187

Usage: Jalview alignmentfile FORMAT

Viewing alignments is useful, but it's often necessary to edit them as well. Alignment
editing is one of the few bioinformatics functions that's actually been done better for
the Windows platform than for Unix, but if you've installed Java support on your
workstation you can use a program called Jalview, written by Michele Clamp and
available from the EBI at http://www.ebi.ac.uk/~michele/jalview/contents.html.[1]

[1] Installing Java support involves installing a Java Development Kit and a Java Runtime
Environment. IBM has ported JDK and JRE 1.1.8 to Linux. They are available at the IBM site,
http://www.ibm.com/java/jdk/index.html. You have to register to download the kits, but it's
free. The kits are available as easy-to-install RPMs. You won't encounter a lot of Java
applications for bioinformatics, but when you do, it's nice to be able to run them.

To use Jalview on a Linux workstation, download the full Unix distribution of the
version you want. Unpack the distribution, then edit the file Jalview to reflect your
local environment. Jalview is a script that sets up the environment for Jalview and
actually starts the program. Specifically, you want to set the environment variable
CLASSPATH to reflect the location of the class file in your JDK (Java Development
Kit) and the location of the Jalview classes (your jalview.jar file). Set the
environment variable JAVA_EXE to point to your Java executable:
setenv CLASSPATH
/usr/jdk118/lib/classes.zip:/usr/local/jalview/jalview.jar
setenv JAVA_EXE /usr/jdk118/bin/java

Jalview can read an alignment (.aln) file from Clustal, as well as several other
alignment formats. We focus on using Jalview as an alignment editor, but it does
have other functions you can explore. It's also capable of searching databases if you
specify them as a command-line option.

To run Jalview, make a link to the Jalview script in your working directory.

The common alignment formats that Jalview recognizes are MSF, CLUSTAL, and
FASTA. These need to be indicated in all capital letters when the command is given.

The Jalview window is an active place: click with care. You can select individual
sequences by clicking on their names at the left of the window, and you can select
ranges of sequence by clicking on the numerical labels at the top of the sequence
alignment. A red box appears to indicate the selected rows.

As in any other menu interface, the File menu contains file import and export
options. Sequence alignments can be read from a file or even from a web URL. The
Edit pulldown contains commands that allow you to delete, copy, and move selected
sequences or columns. You can also manipulate the alignment by hand. Clicking on
any letter in the alignment allows you to open a gap and move everything to the left
of that letter over by dragging in either direction with the mouse. The Colour menu
contains options for color-coding alignments, most of which are most informative for
protein sequence. The Calculate menu contains options for calculating consensus
sequences and phylogenetic trees.

8.2.4 Sequence Logos

http://www.ebi.ac.uk/~michele/jalview/contents.html
http://www.ibm.com/java/jdk/index.html

188

Another way to view sequence alignments, and one which has become quite popular
recently, is the sequence logo format developed by Tom Schneider of the National
Cancer Institute. This format is especially good for shorter sequence regions, such as
protein motifs. Consensus sequences represent each position in an alignment with
the residue that is most commonly found in that position. Other information in the
alignment, such as whether there are any other residues that occur at that site and
with what relative frequencies they occur, is lost in a consensus sequence.

Sequence logos, as illustrated in Figure 8-1, are a graphical way to represent relative
frequencies, information content, order of substitution preference, and other
characteristics of each site in an alignment.

Figure 8-1. A sequence logo

In a sequence logo, the letters in the column at each sequence position represent the
consensus sequence in more detail than a standard single-letter consensus sequence
would. The total height of a column represents the amount of information contained
in that sequence position.[2] The sizes of the individual letters depict their relative
frequency of occurrence.

[2] For a thorough discussion of sequence logos and of information content in biological
sequence data, you can download some very readable papers from Dr. Tom Schneider's web
site at the National Cancer Institute: http://www-lecb.ncifcrf.gov/~toms/index.html.

The software for creating sequence logos is part of a larger group of programs called
the DELILA package, which was originally developed in the Pascal language. You
actually need only two of the many DELILA programs (alpro and makelogo) to create
logos from aligned sequences. Pascal compilers aren't among the compilers
commonly found on Linux systems, but there is a standard GNU Pascal compiler you

http://www-lecb.ncifcrf.gov/~toms/index.html

189

can download if you're feeling adventurous. The other way to compile the software is
to use the C versions of the programs that are now available. Because these
programs have been automatically translated from Pascal, they require that the p2c
(Pascal-to-C) libraries are installed on your system.

An easier approach for the novice is to use the sequence logo web server at the
University of Cambridge, which (as of this writing) is actually recommended by the
author of the DELILA programs and hence, we assume, does exactly what it's
supposed to do. Aligned sequences can be submitted to this server in FASTA
alignment format, which can be generated by ClustalX.

8.3 Phylogenetic Analysis
Having covered some of the basics of multiple sequence alignment, we now
introduce one of its applications: phylogenetic inference. Phylogenetic inference is
the process of developing hypotheses about the evolutionary relatedness of
organisms based on their observable characteristics. Traditionally, phylogenetic
analyses have been based on the gross anatomy of species. When Linneaus
developed the system of classification into kingdoms, phyla, genera, and species, the
early biologists sorted living things into a symbolic Tree of Life, which we saw in
Figure 1-3. This tree-based representation of the relationships among species is a
phylogenetic tree; it has since been adopted as a convenient schematic for depicting
evolutionary relatedness based on sequence similarity. The quantitative nature of
sequence relationships has allowed the development of more rigorous methods and
rules for tree drawing.

While hand-drawn trees of life may branch fancifully according to what is essentially
an artist's conception of evolutionary relationships, modern phylogenetic trees are
strictly binary; that is, at any branch point, a parent branch splits into only two
daughter branches. Binary trees can approximate any other branching pattern, and
the assumption that trees are binary greatly simplifies the tree-building algorithms.

The length of branches in a quantitative phylogenetic tree can be determined in more
than one way. Evolutionary distance between pairs of sequences, relative to other
sequences in an input data set, is one way to assign branch length.

While a phylogeny of species generally has a root, assuming that all species have a
specific common ancestor, a phylogenetic tree derived from sequence data may be
rooted or unrooted. It isn't too difficult to calculate the similarity between any two
sequences in a group and to determine where branching points belong. It is much
harder to pinpoint which sequence in such a tree is the common ancestor, or which
pair of sequences can be selected as the first daughters of a common ancestor.
While some phylogenetic inference programs do offer a hypothesis about the root of
a tree, most simply produce unrooted trees. Figure 8-2 and Figure 8-3 illustrate
rooted and unrooted phylogenetic trees.

Figure 8-2. A rooted phylogenetic tree

190

Figure 8-3. An unrooted phylogenetic tree

A phylogeny inferred from a protein or nucleic acid sequence has only a passing
resemblance to a whole-organism tree of life (a true tree) that represents actual
speciation events. A single phylogeny may be a tree, and it may describe a biological
entity, but it takes far more than a single evolutionary analysis to draw conclusions
about whole-organism phylogeny. Sequence-based phylogenies are quantitative.
When they are built based on sufficient amounts of data, they can provide valuable,
scientifically valid evidence to support theories of evolutionary history. However, a
single sequence-based phylogenetic analysis can only quantitatively describe the
input data set. It isn't valid as a quantitative tool beyond the bounds of that data set,
and if you are using phylogenetic analysis tools to develop evolutionary hypotheses,
it is critical to remember this point.

It has been shown, by comparative analysis of phylogenies generated for different
protein and gene families, that one protein may evolve more quickly than another,
and that a single protein may evolve more quickly in some organisms than in others.
Thus, the phylogenetic analysis of a sequence family is most informative about the
evolution of that particular gene. Only by analysis of much larger sets of data can
theories of whole-organism phylogeny be suggested.

8.3.1 Phylogenetic Trees Based on Pairwise Distances
One of the easiest to understand algorithms for tree drawing is the pairwise distance
method. This method produces a rooted tree. The algorithm is initialized by defining
a matrix of distances between each pair of sequences in the input set. Sequences are
then clustered according to distance, in effect building the tree from the branches
down to the root.

Distances can be defined by more than one measure, but one of the more common
and simple measures of dissimilarity between DNA sequences is the Jukes-Cantor
distance, which is logarithmically related to the fraction of sites at which two

191

sequences in an alignment differ. The fraction of matching positions in an ungapped
alignment between two unrelated DNA sequences approaches 25%. Consequently,
the Jukes-Cantor distance is scaled such that it approaches infinity as the fraction of
unmatched residue pairs approaches 75%.

The pairwise clustering procedure used for tree drawing (UPGMA, unweighted pair
group method using arithmetic averages) is intuitive. To begin with, each sequence
is assigned to its own cluster, and a branch (or leaf) of the tree is started for that
sequence at height zero in the tree. Then, the two clusters that are closest together
in terms of whatever distance measure has been chosen are merged into a single
cluster. A branch point (or node) is defined that connects the two branches. The
node is placed at a height in the tree that reflects the distance between the two
leaves that have been joined. This process is repeated iteratively, until there are only
two clusters left. When they are joined, the root of the tree is defined. The branch
lengths in a tree constructed using this process theoretically reflect evolutionary
time.

8.3.2 Phylogenetic Trees Based on Neighbor Joining
Neighbor joining is another distance matrix method. It eliminates a possible error
that can occur when the UPGMA method is used. UPGMA produces trees in which the
branches that are closest together by absolute distance are placed as neighbors in
the tree. This assumption places a restriction on the topology of the tree that can
lead to incorrect tree construction under some conditions.

In order to get around this problem, the neighbor-joining algorithm searches not just
for minimum pairwise distances according to the distance metric, but for sets of
neighbors that minimize the total length of the tree. Neighbor joining is the most
widely used of the distance-based methods and can produce reasonable trees,
especially when evolutionary distances are short.

8.3.3 Phylogenetic Trees Based on Maximum Parsimony
A more widely used algorithm for tree drawing is called parsimony. Parsimony is
related to Occam's Razor, a principle formulated by the medieval philosopher William
of Ockham that states the simplest explanation is probably the correct one.[3]
Parsimony searches among the set of possible trees to find the one requiring the
least number of nucleic acid or amino acid substitutions to explain the observed
differences between sequences.

[3] Or, in other words, "It is futile to do with more what can be done with fewer."

The only sites considered in a parsimony analysis of aligned sequences are those
that provide evolutionary information—that is, those sites that favor the choice of
one tree topology over another. A site is considered to be informative if there is
more than one kind of residue at the site, and if each type of residue is represented
in more than one sequence in the alignment. Then, for each possible tree topology,
the number of inferred evolutionary changes at each site is calculated. The topology
that is maximally parsimonious is that for which the total number of inferred changes
at all the informative sites is minimized. In some cases there may be multiple tree
topologies that are equally parsimonious.

192

As the number of sequences increases, so does the number of possible tree
topologies. After a certain point, it is impossible to exhaustively enumerate the
scores of each topology. A shortcut algorithm that finds the maximally parsimonious
tree in such cases is the branch-and-bound algorithm. This algorithm establishes an
upper bound for the number of allowed evolutionary changes by computing a tree
using a fast or arbitrary method. As it evaluates other trees, it throws out any
exceeding this upper bound before the calculation is completed.

8.3.4 Phylogenetic Trees Based on Maximum Likelihood
Estimation
Maximum likelihood methods also evaluate every possible tree topology given a
starting set of sequences. Maximum likelihood methods are probabilistic; that is,
they search for the optimal choice by assigning probabilities to every possible
evolutionary change at informative sites, and by maximizing the total probability of
the tree. Maximum likelihood methods use information about amino acid or
nucleotide substitution rates, analogous to the substitution matrices that are used in
multiple sequence alignment.

8.3.5 Software for Phylogenetic Analysis
There is a variety of phylogenetic analysis software available for many operating
systems. With such a range of choices, which package do you use? One of the most
extensive listings currently available is maintained by Dr. Joe Felsenstein, the author
of the PHYLIP package, and is accessible from the PHYLIP web page
(http://evolution.genetics.washington.edu/phylip.html). If you don't want to follow
our example and use PHYLIP, you can easily find information about other packages.

8.3.5.1 PHYLIP

The most widely distributed phylogenetic analysis package is PHYLIP. It contains 30
programs that implement different phylogenetic analysis algorithms. Each of the
programs runs separately, from the command line. By default, most of the programs
look for an input file called infile and write an output file called outfile. Rather than
entering parameters via command-line flags, as with BLAST, the programs have an
interactive text interface that prompts you for information.

The following are the PHYLIP programs you are most likely to use when you're just
getting started analyzing protein and DNA sequence data:

PROTPARS

Infers phylogenies from protein sequence input using the parsimony method

PROTDIST

Computes an evolutionary distance matrix from protein sequence input, using
maximum likelihood estimation

DNAPARS

193

Infers phylogenies from DNA sequence input using parsimony

DNAPENNY

Finds all maximally parsimonious phylogenies for a set of sequences using a
branch-and-bound search

DNAML

Infers phylogenies from DNA sequence input using maximum likelihood
estimation

DNADIST

Computes a distance matrix from DNA sequence input using the Jukes-Cantor
distance or one of three other distance criteria

NEIGHBOR

Infers phylogenies from distance matrix data using either the pairwise
clustering or the neighbor joining algorithm

DRAWGRAM

Draws a rooted tree based on output from one of the phylogeny inference
programs

DRAWTREE

Draws an unrooted tree based on output from one of the phylogeny inference
programs

CONSENSE

Computes a consensus tree from a group of phylogenies

RETREE

Allows interactive manipulation of a tree by the user—not based on data

PHYLIP is a flexible package, and the programs can be used together in many ways.
To analyze a set of protein sequences with PHYLIP, you can:

1. Read a multiple protein sequence alignment using PROTDIST and create a
distance matrix.

2. Input the distance matrix to NEIGHBOR and generate a phylogeny based on
neighbor joining.

3. Read the phylogeny into DRAWTREE and produce an unrooted phylogenetic
tree.

194

Or, you can:

1. Read a multiple sequence alignment using PROTPARS and produce a
phylogeny based on parsimony.

2. Read the phylogeny using DRAWGRAM and produce a rooted tree.

Each of the PHYLIP programs is exhaustively documented in the *.doc files available
with the PHYLIP distribution. This documentation has been converted into HTML by
several groups. Links to web-based PHYLIP documentation are available from the
PHYLIP home page.

Several organizations have made PHYLIP servers available on the Web; the version
of PHYLIP in the SDSC Biology Workbench produces downloadable PostScript output.

8.3.5.1.1 The PHYLIP input format

PHYLIP's molecular sequence analysis programs can accept sequence data in an
aligned (interleaved) format:
39
Archaeopt CGATGCTTAC CGCCGATGCT
Hesperorni CGTTACTCGT TGTCGTTACT
Baluchithe TAATGTTAAT TGTTAATGTT
B. virgini TAATGTTCGT TGTTAATGTT
Brontosaur CAAAACCCAT CATCAAAACC
B.subtilis GGCAGCCAAT CACGGCAGCC

TACCGCCGAT GCTTACCGC
CGTTGTCGTT ACTCGTTGT
AATTGTTAAT GTTAATTGT
CGTTGTTAAT GTTCGTTGT
CATCATCAAA ACCCATCAT
AATCACGGCA GCCAATCAC

where the first 10 characters are that sequence's name followed by the sequence in
aligned form. Subsequent rows follow. In a sequential format, the complete first
sequence is given, then the second complete sequence, etc. However, in either case,
the sequences must be prealigned by another program. PHYLIP doesn't have a utility
for computing multiple sequence alignments.

If you examine the phylogeny output from PHYLIP, you'll find it's represented by
codes indicating each of the sequences, arranged in nested parentheses. This is
called Newick notation. The pattern of the parentheses indicates the topology of the
tree. The innermost parentheses surround the terminal branches of the tree, e.g.,
(A,B), and each subsequent set of parentheses joins another pair of branches, e.g.,
((A,B),(C,D)). If the algorithm that generates the phylogeny produces branch
lengths, these branch lengths are associated explicitly with each branch within the
Newick notation: e.g., ((A:1.2,B:1.5):1.0,(C:2.5,D:0.5):1.2).

8.3.5.2 Generating input for PHYLIP with ClustalX

195

The multiple sequence alignment program ClustalX, which we discussed earlier in
this chapter, draws phylogenetic trees with the neighbor joining method. Perhaps
more importantly, it can read sequences in various input formats and then write
PHYLIP-format files from multiple sequence alignments, using a simple Save As
command from within the ClustalX interface.

8.4 Profiles and Motifs
In addition to studying relationships between sequences, one of the
most successful applications of multiple sequence alignments is in
discovering novel, related sequences. This profile- or motif-based
analysis uses knowledge derived from multiple alignments to construct
and search for sequence patterns. In this section, we first introduce
some of the concepts behind motifs, then describe tools that use these
principles to search sequence databases.
First, by way of a refresher, a multiple sequence alignment is an
alignment of anywhere from three to hundreds of sequences. Multiple
sequence alignments can span the full sequence of the proteins
involved or a single region of similarity, depending on their purpose.
Multiple sequence alignments, such as the one shown in Figure 8-4,
are generally built up by iterative pairwise comparison of sequences
and sequence groups, rather than by explicit multiple alignment.

Figure 8-4. A multiple sequence alignment, shown using ClustalX

196

A sequence motif is a locally conserved region of a sequence, or a
short sequence pattern shared by a set of sequences. The term "motif"
most often refers to any sequence pattern that is predictive of a
molecule's function, a structural feature, or family membership. Motifs
can be detected in protein, DNA, and RNA sequences, but the most
common use of motif-based analyses is the detection of sequence
motifs that correspond to structural or functional features in proteins.
Motifs are generated from multiple sequence alignments and can be
displayed as patterns of amino acids (such as those in the Prosite
database) or as sequence logos. For computational purposes, they can
be represented as flexible patterns, position-specific scoring matrices,
or profile hidden Markov models.
Motifs can be created for protein families, or sets of proteins whose
members are evolutionarily related. Protein families can consist of
many proteins that range from very similar to quite diverse. While the
idea of a protein family is a fairly common concept, the method of
selecting a protein family and defining its limits depends on the
researcher who defines it. As in pairwise sequence comparison, there
is a lower bound beyond which homology can't easily be detected.
Motif-based methods can push this lower bound by detecting
particularly subtle sequence patterns and distant homologs.

197

A sequence profile is a quantitative or qualitative method of describing
a motif. A profile can be expressed in its most rudimentary form as a
list of the amino acids occurring at each position in the motif. Early
profile methods used simple profiles of this sort; however, modern
profile methods usually weight amino acids according to their
probability of being observed at each position.
Figure 8-5 shows a position-specific scoring matrix (PSSM), which is a
matrix of scores representing a motif. Unlike a standard scoring
matrix, the first dimension of the matrix is the length of the motif; the
second dimension consists of the 20 amino acid possibilities. For each
position in the matrix, there is a probability score for the occurrence of
each amino acid. Most methods for developing position-specific scoring
matrices normalize the raw probabilities with respect to a standard
scoring matrix such as BLOSUM62.
Figure 8-5. PSSMs for sequence motifs common to zinc finger proteins

Finally, a profile hidden Markov model (HMM) is the rigorous
probabilistic formulation of a sequence profile. Profile HMMs contain
the same probability information found in a PSSM; however, they can

198

also account for gaps in the alignment, which tends to improve their
sensitivity. Because profile analysis methods are still a subject of
active research, there are many different programs and methods for
motif discovery and profile building. We will focus on two of the easiest
motif discovery packages to use, MEME and HMMer. We also describe
the searchable databases of preconstructed protein family motifs—
some with associated PSSMs or profile HMMs—offered by several
organizations.
8.4.1 Motif Databases
We have seen that profiles and other consensus representations of
sequence families can be used to search sequence databases. It
shouldn't be too surprising, then, that there are motif databases that
can be searched using individual sequences. Motif databases contain
representations of conserved sequences shared by a sequence family.
Today, their primary use is in annotation of unknown sequences: if you
get a new gene sequence hot off the sequencer, scanning it against a
motif database is a good first indicator of the function of the protein it
encodes.
Motifs are generated by a variety of methods and with different
objectives in mind. Some rely on automated analysis, but there is
often a large amount of hands-on labor invested in the database by an
expert curator. Because they store only those motifs that are present
in reasonably large families, motif databases are small relative to
GenBank, and they don't reflect the breadth of the protein structure or
sequence databases. Be aware that an unsuccessful search against a
motif database doesn't mean your sequence contains no detectable
pattern; it could be part of a family that has not yet been curated or
that doesn't meet the criteria of the particular pattern database you've
searched. For proteins that do match defined families, a search against
the pattern databases can yield a lot of homology information very
quickly.
8.4.1.1 Blocks

Blocks, a service of the Fred Hutchinson Cancer Research Center, is an
automatically generated database of ungapped multiple sequence
alignments that correspond to the most conserved regions of proteins.
Blocks is created using a combination of motif-detection methods,
beginning with a step that exhaustively searches all spaced amino acid
triplets in the sequence to discover a seed alignment, followed by a
step that extends the alignment to find an aligned region of maximum

199

length. The Blocks database itself contains more than 4,000 entries; it
is extended to over 10,000 entries by inclusion of blocks created from
entries in several other protein family databases (see Section 8.4.1.6).
The Blocks server also provides several useful search services,
including IMPALA (which uses the BLAST statistical model to compare
a sequence against a library of profiles) and LAMA (Local Alignment of
Multiple Alignments; Shmuel Pietrokovski's program for comparing an
alignment of your own sequences against a database of Blocks).
8.4.1.2 PROSITE

PROSITE is an expert-curated database of patterns hosted by the
Swiss Institute of Bioinformatics. It currently contains approximately
1,200 records, and is available for download as a structured flat file
from http://ftp.expasy.ch. PROSITE uses a single consensus pattern to
characterize each family of sequences. Patterns in PROSITE aren't
developed based on automated analysis. Instead, they are carefully
selected based on data published in the primary literature or on
reviews describing the functionality of specific groups of proteins. A
humorous cartoon on the PROSITE server indicates that the optimal
method for identifying patterns requires only a human, chalk, and a
chalkboard. PROSITE contains pattern information as well as position-
specific scoring matrices that can detect new instances of the pattern.
8.4.1.3 Pfam

Pfam is a database of alignments of protein domain families. Pfam is
made up of two databases: Pfam-A and Pfam-B. Pfam-A is a curated
database of over 2,700 gapped profiles, most of which cover whole
protein domains; Pfam-B entries are generated automatically by
applying a clustering method to the sequences left over from the
creation of Pfam-A. Pfam-A entries begin with a seed alignment, a
multiple sequence alignment that the curators are confident is
biologically meaningful and that may involve some manual editing.
From each seed alignment, a profile hidden Markov model is
constructed and used to search a nonredundant database of available
protein sequences. A full alignment of the family is produced from the
seed alignments and any new matches. This process can be iterated to
produce more extensive families and detect remote matches. Pfam
entries are annotated with information extracted from the scientific
literature, and incorporate structural data where available. As a final
note, Pfam is the database of profile HMMs used by the GeneWise
genefinder to search for open reading frames.
8.4.1.4 PRINTS

http://ftp.expasy.ch

200

PRINTS is a database of protein motifs similar to PROSITE, except that
it uses "fingerprints" composed of more than one pattern to
characterize an entire protein sequence. Motifs are often short relative
to an entire protein sequence. In PRINTS, groups of motifs found in a
sequence family can define a signature for that family.
8.4.1.5 COG

NCBI's Clusters of Orthologous Groups (COG) database is a different
type of pattern database. COG is constructed by comparing all the
protein sequences encoded in 21 complete genomes. Each cluster
must consist of protein sequences from at least three separate
genomes. The premise of COG is that proteins that are conserved
across these genomes from many diverse organisms represent ancient
functions that have been conserved throughout evolution. COG entries
can be accessed by organism or by functional category from the NCBI
web site. COG currently contains more than 2,100 entries.
8.4.1.6 Accessing multiple databases

So, which motif database should you use to analyze a new sequence?
Because the comparisons are performed quickly and efficiently, we
recommend you use as many as possible, keeping track of the best
matches from each, their scores, and (if available) the significance of
the hit. While Blocks uses InterPro as one of the sources for its own
patterns, as of June 2000 it contains only ungapped patterns, omitting
gapped profiles such as those contained in Pfam-A and PROSITE.
Fortunately, all the motif databases discussed here have search
interfaces available on the Web, most of which accept input in FASTA
format or FASTA alignment format.
One service that allows integrated searching of many motif databases
is the European Bioinformatics Institute's Integrated Resource of
Protein Domains and Functional Sites (InterPro to its friends). InterPro
allows you to compare a sequence against all the motifs from Pfam,
PRINTS, ProDom, and PROSITE. InterPro motifs are annotated with the
name of the source protein, examples of proteins in which the motif
occurs, references to the literature, and related motifs.
8.4.2 Constructing and Using Your Own Profiles
Motif databases are useful if you're looking for protein families that are
already well documented. However, if you think you've found a new
motif you want to use to search GenBank, or you want to get creative
and look for patterns in unusual places, you need to build your own

201

profiles. Several software packages and servers are available for motif
discovery, the process of finding and constructing your own motifs
from a set of sequences. The simplest way to construct a motif is to
find a well-conserved section out of a multiple sequence alignment. As
usual, though, we encourage you to use automated approaches
instead of doing things by hand: automation makes your work faster,
more reproducible, and less error-prone. In addition to Block Maker, a
number of other programs are commonly used to search for and
discover motifs. In this section, we discuss the use of the MEME and
HMMer programs, two packages commonly used for motif analysis.
Before we begin, though, here are two observations about motif
discovery. First, as InterPro and Blocks grow, it is becoming
increasingly difficult to find completely novel sequence motifs
undocumented by one of their member databases. Be sure to check
your motif against the set of known motifs, either by searching your
sequences against the databases or by using a motif-comparison tool,
such as the Blocks server's LAMA program. Second, in order to find
patterns reliably and search with them, you need a lot of sequences.
We have used these programs in projects where very few (5-10)
sequences were available, but, as a rule of thumb, more than 20
sequences are needed for reasonable motif predictions. The more
sequences you have, the more reliable the resulting motifs will be.
8.4.2.1 Finding new motifs with MEME

The MEME programs are a set of tools for motif analysis developed by
Charles Elkan, Tim Bailey, and William Grundy of the University of
California, San Diego. MEME is short for Multiple EM for Motif Elicitation
(EM, in turn, is short for Expectation Maximization, a procedure from
the world of statistics for predicting the values of "missing," or
unobserved, values). They can be used over the Web
(http://meme.sdsc.edu) or their C source code can be downloaded,
compiled, and run on a local computer; here, we look at the web
version. There are three programs in the MEME suite:
MEME

Discovers shared motifs in a set of unaligned sequences
MAST

Takes a motif discovered by MEME and uses it to search a
sequence database

202

MetaMEME
Constructs a model from multiple MEME motifs and uses it to
search a sequence database

When you submit a set of sequences to MEME, you are testing the
hypothesis that, although though you don't know the overall alignment
of the sequences, they share short regions of similarity. You begin
using MEME by entering on a web form your email address and a set of
sequences in which you wish to search for a motif. Sequences can be
in one of several formats, although FASTA is preferred. At the bottom
of the sumission page are some parameters you need to set regarding
the number of times per sequence you expect a motif to occur, the
number of motifs you expect to find, and the approximate width of
each motif.
The results will be sent back to you in three emails. The first is just a
confirmation message, letting you know that the job is being
processed. The second (with the subject line "MEME Job xxxxx
results:", where xxxxx is the job number assigned by the MEME
server) contains MEME's prediction for the motifs in both human- and
machine-readable form. This message is the one you need to search
the database; be sure to save the contents of this message to a text
file, so you can later submit it to MAST or MetaMEME. The third
message (with the subject line "MEME job... MAST analysis:") is an
HTML document (making it suitable for viewing in a web browser) that
shows the location of each motif in the sequences you submitted. Each
message is well documented and contains detailed explanations of the
contents.
8.4.2.2 Searching for motifs with MAST and MetaMEME

The next step of a motif analysis is to see whether there are new
occurrences of your motif in other sequences. The MEME server
provides two distinct programs, MAST and MetaMEME, that allow you
to search a sequence database using your new MEME motifs. MAST
simply searches for occurrences of each motif and reports matching
sequences, while MetaMEME combines multiple MEME motifs into a
hidden Markov model and uses that model to search the database.
Both MAST and MetaMEME take the MEME motif prediction from the
second email[4] as input; MetaMEME also uses the original sequence file
that generates the MEME motifs in creating its HMM. Both programs
return results showing the position of each match, its score, and its
statistical significance.

203

[4] You did save the second email to a text file as we suggested, didn't you?

8.4.2.3 Motif discovery with other programs

As we mentioned previously, there are a number of programs that
discover motifs in groups of unaligned sequences. Besides the ones we
mentioned, you may want to try these: the SAM HMM programs
developed by David Haussler and coworkers at University of California,
Santa Cruz; the Emotif and Ematrix servers in the Brutlag group at
Stanford University; and the ASSET, gibbs, and Probe tools available
for download from NCBI. Again, a good thing to do early on is to use
the LAMA program to compare your motif against the motifs in the
Blocks database. If it looks like you really do have a novel motif, it can
be useful to compare the results of one or more of these other motif
discovery tools. If all the programs predict the same motif from the
same sequences, you can be more confident in your results.
8.4.2.4 HMMer

HMMer is a software package for building profile HMMs. HMMer's
central functionality is located in the hmmbuild program, which creates
profile HMMs from sequence alignment, and the hmmcalibrate
program, which calibrates search statistics for the HMM. The HMMer
package also contains tools for generating new sequences
probabilistically based on an HMM, searching sequence databases with
a profile as the query, and searching profile databases with a query
sequence, as well as the handy utility programs we list here:
getseq

Extracts a sequence from a large flat-file database by name.
Handy to have around if you're selecting specific records out of a
database from the command line.

hmmalign
Reads both a sequence file and a profile HMM and creates a
multiple sequence alignment.

hmmbuild
Builds a profile HMM from a multiple sequence alignment. It can
produce global results for the entire alignment or results for
multiple local alignments.

204

hmmcalibrate
Reads an HMM and calibrates its search statistics.

hmmconvert
Converts an HMM into other profile formats, notably GCG profile
format.

hmmemit
Generates sequences probabilistically based on a profile HMM. It
can also generate a consensus sequence.

hmmfetch
Retrieves a profile HMM from a database if the name of the
desired record is known.

hmmindex
Indexes a profile HMM database.

hmmpfam
Searches a profile HMM database (e.g., Pfam) with a query
sequence. Use this if you're trying to annotate an unknown
sequence.

hmmsearch
Searches a sequence database with a profile HMM. Use this if
you're looking for more instances of a pattern in a sequence
database.

sreformat
Converts a sequence or alignment file from one format to
another. Handy to have around.

HMMer reads multiple sequence alignment files from several different
sequence alignment programs, including ClustalW. The HMMer authors
recommend ClustalW as a tool to generate multiple alignments for
input into hmmbuild.

205

HMMer is available for download from Dr. Sean Eddy at Washington
University (http://hmmer.wustl.edu). HMMer is a very well-behaved
program, which installs without difficulty from source on Linux
systems: just follow the directions in the INSTALL file. It even installs
its own Unix manpages so you can access online help for each of the
HMMer programs using the man command. Specific information about
each of the HMMer programs' command-line options can also be
viewed by running the program with the -h option.
8.4.3 Incorporating Motif Information into Pairwise Alignment
Multiple sequence information can optimize pairwise alignments. The
BLAST package contains two new modes that use multiple alignment
information to improve the specificity of database searches. These
modes are accessed through the blastpgp program.
Position Specific Iterative BLAST (PSI-BLAST) is an enhancement of
the original BLAST program that implements profiles to increase the
specificity of database searches. Starting with a single sequence, PSI-
BLAST searches a database for local alignments using gapped BLAST
and builds a multiple alignment and a profile the length of the original
query sequence. The profile is then used to search the protein
database again, seeking local alignments. This procedure can be
iterated any number of times. One caveat of using PSI-BLAST is that
you need to know where to stop. Errors in alignment can be magnified
by iteration, giving rise to false positives in the ultimate sequence
search. PSI-BLAST can be used as a standalone by running the
blastpgp program. However, the NCBI PSI-BLAST server is probably
the optimal way to run a PSI-BLAST search. The server requires you to
decide after each iteration whether to continue to another iteration,
and you can hand-pick the sequences that contribute to the profile at
each step.
Pattern Hit Initiated BLAST (PHI-BLAST) takes a sequence and a
preselected pattern found in that sequence as input to query a protein
sequence database. The pattern must be expressed in PROSITE
syntax, which is described in detail on the PHI-BLAST server site. PHI-
BLAST can also initiate a series of PSI-BLAST iterations, and can be a
standalone program or a (vastly more user-friendly) web server.

Chapter 9. Visualizing Protein Structures
and Computing Structural Properties

206

Analysis of protein 3D structures is a more mature field than biological sequence
analysis. The Protein Data Bank started distributing coordinates of macromolecular
crystal structures in the early 1970s, and since that time, many research groups and
companies have developed software to visualize and measure the properties of
protein structures.

Visualization of structure and measurement of structural properties are important
tools for molecular and structural biologists. Being able to "see" the 3D structure of a
protein and analyze its shape in detail can suggest the location of catalytic sites and
interaction sites, and can help identify targets for the site-directed mutagenesis
studies that are so often used to arrive at a detailed characterization of a protein's
functional chemistry.

Here are some recent applications of this type of approach in molecular biology:

· Molecular modeling of an allergy-causing protein from mountain cedar pollen
and subsequent identification of the region that causes allergic response

· Characterization of the mutagenic active site in DNA reverse transcriptase
from the HIV virus; this site is thought to be responsible for the ability of the
HIV virus to mutate rapidly

· Modeling of a DNA binding protein involved in Bloom syndrome, and
characterization of the mutations that cause the disease

There are many specialized analysis programs in the protein structure literature, and
we will not attempt to catalogue all these methods. Instead, we present an
introduction to standard operations for analyzing and modeling protein structure,
with examples of software for each purpose: visualization and plotting; geometric
and surface property analysis; classification; analysis of intramolecular interactions
and solvent interactions; and computation of some physicochemical properties.

For all-purpose molecular structure modeling, the easiest-to-use tools are still
commercial packages such as MSI's Quanta and Insight, Tripos' SYBYL, and others.
However, licensing for these packages, especially for multiple users, is quite
expensive and they generally require specialized high-end hardware (such as SGI
and IBM Unix workstations) to run. In this chapter, we again focus on software that
can run on a standard desktop PC under Linux or within a web browser on any
platform.

9.1 A Word About Protein Structure Data
Because protein structure analysis is a relatively old field, evolving earlier in the
history of computers than sequence analysis, it has inherited some inconveniences.
While many programs use the standard PDB format, others, especially molecular
simulation software, expect input in slightly or significantly different forms. And
because protein structure analysis software is older, many programs are written in
the FORTRAN language and are very picky about data input formats. Data
standardization at the PDB is excellent, but standardization at the individual software
package level isn't as good. If you're going to be doing a lot of work with protein
structure data it may be necessary to learn some programming to be able to convert
structure files to alternate formats when necessary. We show an example of a simple
structure file-format conversion in Chapter 12.

207

The Brookhaven PDB format is the protein structure data format that most structure-
analysis programs use. This format met the needs of the protein structure field in the
1970s, and was especially human-readable, and compatible with FORTRAN
programs, because of its use of rigidly structured 80-character lines. This format
consists of a header section that contains miscellaneous information about the
structure, including literature citations; resolution; crystallographic parameters;
sequence, and sometimes secondary structure information; and a section that
contains atom records. Atoms labeled ATOM are part of the protein chain, while
atoms labeled HETATM (for heteroatom group) are part of cofactor molecules,
substrates, ions, or other groups that aren't a covalently bound part of the protein
chain. A detailed line-by-line description of the Brookhaven format is available from
the RCSB PDB web site.

Protein structure files also are available from the PDB in a new format called mmCIF
(the Macromolecular Crystallographic Information Format) and from NCBI in the
ASN.1 file format. Both of these formats are highly parseable by computers, and if
you are writing computer programs to analyze protein structures, they may be easier
to use than the obsolete Brookhaven format. However, you'll need to consider that
the user community is still attached to the Brookhaven format.

9.2 The Chemistry of Proteins
To work with protein sequence and structure, you need a working knowledge of
protein chemistry—the kind of knowledge you'd probably have picked up in an
undergraduate organic chemistry course. We'll provide you with a little of that
vocabulary here, and you can find out more from the references listed in the
Bibliography. If you already know what you need to know about protein chemistry,
you can skip ahead to Section 9.3.

The reason you should have a basic knowledge of organic chemistry when studying
protein structures is simple. Proteins often perform their functions using standard
organic reaction mechanisms, mediated by amino acids and small organic molecules
(cofactors) that bind to the protein, or by metal ions. To understand how the protein
structure might catalyze a reaction, you need to understand enough about organic
reaction mechanisms to develop a hypothesis about how the reaction might work,
given the shape of the protein and the location of various amino acids.

Even in cases in which a catalytic mechanism isn't your main concern, chemistry
comes into play. Protein association is often mediated by the electrostatic properties
of the protein structure; interacting molecules can be drawn together over
considerable distances by strong electrostatic potentials. Within protein structures,
hydrogen bonds and other interatomic interactions confer structural stability.
Interatomic interactions and molecular shapes are the basis of the specificity of
intermolecular interactions—the interactions of proteins with other proteins or with
small molecule substrates. You are likely to be concerned about molecular specificity
in practical applications of biochemistry—designing small-molecule or peptide drugs,
understanding the molecular basis of disease and immunity, or delving into the
specific molecules involved in sending molecular signals between cells and through
the body.

The tools in this chapter enable you to look at a protein structure, see what its
features are, locate different types of amino acids and visualize specific subsets of

208

the protein, measure distances and surface areas, and compute spatially variable
properties such as solvent accessibility and electrostatic potentials. However, what
you can do with those tools depends on your understanding of protein chemistry.

9.2.1 From 1D to 3D
How does the chemistry of a protein relate to its 1D sequence? In Chapter 8, we
discussed techniques for detecting characteristic conserved patterns, called motifs, in
families of protein sequences. We can find these sequence patterns in 1D data
because although the 3D structure of a protein is complex, it is somehow determined
by the invariant sequence of amino acids that makes up the protein. Motifs that are
conserved in sequence often are related to important structural or functional features
of a protein family, and those features often can be understood by their roles in the
protein structure.

When amino acids come together in sequence to form a polymer, they do so by
forming a peptide bond between the basic amino group and the acidic carboxyl group
of each amino acid (Figure 9-1). This results in a long chain of amino acids that has a
repeating backbone structure.

Figure 9-1. Peptide bond, peptide chain (chemical notation)

The variable group of each amino acid protrudes from the repeating backbone and is
referred to in the protein structure business as a sidechain (Figure 9-2). Each of the
20 amino acid sidechains is chemically different from the others in some respect.

Figure 9-2. The amino acid sidechains (chemical notation)

209

The sidechains can be classified in many ways. Some are relatively large, while
others are tiny or in one case nonexistent. Some have a positive or negative charge.
Some are oily, or hydrophobic (water-fearing), meaning that it's energetically
unfavorable for them to be solvated in water. Others are hydrophilic (water-loving),
and they solvate easily in water. Some have bulky ringlike structures, while others
are straight carbon chains. Some are acids, others are bases. Amino acids are
conserved through evolution at specific locations in a protein sequence because they
are needed there, whether to stabilize the protein structure, to form a specific
binding site, or to catalyze a reaction. You can detect that particular amino acids in a
protein are conserved by looking at sequence data, but to develop a hypothesis
about why they are conserved, it's helpful to examine the 3D protein structure.
Figure 9-3 shows the 20 amino acids classified into chemically similar groups. Note

210

that many of the amino acids fall into more than one category. An amino acid
sidechain can be both "nonpolar" and "basic," for instance, like lysine, which has a
long aliphatic sidechain that terminates in an amino group. Because the relationship
between chemical characteristics and amino acids isn't one-to-one, but rather many-
to-many, it's not always simple to predict the effects of an amino acid substitution.

Figure 9-3. The amino acid sidechains (classification in a Venn diagram)

Interatomic forces aren't responsible only for specific interactions that form binding
and interaction sites; they also are responsible for the formation of certain standard
patterns that are consistently observed in protein structure. The amino acid
backbone is sterically constrained—restricted from moving in certain ways because
atoms will bump into each other—to follow only certain pathways. You may already
be familiar with the alpha helix and beta sheet structures that commonly occur in
protein structures; the reason that alpha helices and beta sheets are common is the
steric restrictions on the protein backbone.

From the known structures of amino acids, Pauling and Corey first predicted the
existence of alpha helices and beta sheets as a component of protein structure.
Ramachandran first described exactly what range of conformations are available to
amino acids in a peptide chain. Peptide chain conformation is simply described by the
values of the dihedral angles in the protein backbone (i.e., the angle described by
the four atoms surrounding the N-C bond and the angle described by the four
atoms surrounding the C -C bond). These angles are referred to as and ,
respectively. The chain isn't free to rotate around the third kind of bond in the
protein backbone, the peptide bond, because it is a partial double bond and hence
chemically constrained to be planar, so the values of and for each amino acid
provide a complete description of the protein backbone. A Ramachandran map is
simply a plot of versus for an entire protein structure. One means of evaluating
a protein structure model is to compare its individual Ramachandran map with the
general Ramachandran map of allowed values of and .

Figure 9-4 is a general Ramachandran map that shows the allowed combinations of
and values for amino acids in protein structures. The small shaded region in the

lower left quadrant of the map is the standard conformation of an amino acid in an

211

alpha helix. The larger shaded region in the upper left quadrant of the map is the
standard conformation of an amino acid in a beta sheet, or extended structure.

Figure 9-4. Ramachandran map of allowed conformation for protein
backbones

It's apparent from the Ramachandran map that steric interactions are very important
determinants of the general features of protein structure. Steric interactions instantly
eliminate a large fraction of possible conformations for proteins and leave relatively
few options for how a compact structure can form from a linear chain of amino acids.

The sequence of a protein is called its primary structure; the most basic level of
organization in a protein is the sequence of amino acids. Alpha helix and beta sheet
structures, shown in Figure 9-5, are known collectively as secondary structures and
are the next level of organization. Interactions between multiple secondary structure
elements give rise to supersecondary structure and tertiary structure—helices and
sheets contacting each other to form larger characteristic structures, which can be
described by their topology.

Figure 9-5. Alpha helix and beta strand structures

212

To create a functional protein, the sequence of amino acids in the protein chain must
give rise to the proper 3D fold for the protein, and it must also place individual amino
acids at appropriate points on that scaffold to carry out the protein's chemistry.
Finding ways to extract those chemical instructions from the sequences of known
proteins, formulating them as rules, and using those rules to predict the structure of
other proteins is one of the biggest open research problems in bioinformatics.

9.2.2 Interatomic Forces and Protein Structure
Since the form that a protein structure can take and its chemical characteristics are
governed by interatomic interactions, it is important to have at least a basic
understanding of the interatomic interactions that play a role in protein structure.
Interactions between atoms are physically complicated and to describe them in detail
would require a whole other book, which fortunately has already been written by
someone else: see the Bibliography. What we hope to give you is a rudimentary
knowledge of these forces, to help you understand why computer methods have
been developed to measure and calculate particular structural properties of proteins.

Understanding these forces gives us a basis for designing evaluative and predictive
methods. Threading methods rely on the ability to discriminate between an amino
acid that is in a favorable chemical environment and one that isn't. Homology
modeling and structure optimization methods rely on rules for spacing between
atoms, bond lengths, bond angles, and other values. These rules can be derived
from chemical experiments on small molecules or from the distribution of observed
values in known protein structures. However these rules are constructed, though,
they reflect energetically favorable interactions between atoms.

213

9.2.2.1 Covalent interactions

Covalent interactions are the very short range (approximately 1 to 1.5 angstroms);
they are very strong forces that bind atoms together into a molecule. In covalent
bonding, the atoms involved actually share electrons. Unlike other forces
encountered in protein structures, covalent bonds actually change the nature of the
atoms involved to some extent. Atoms involved in covalent bonds are no longer
discrete entities; instead, they combine to form a new molecule.

The protein backbone, including the peptide bond that joins one amino acid to
another, is held together by covalent bonds. Amino acids retain some of their
chemical individuality within the protein structure, but formally they become part of
a new molecule. Atoms within individual amino acid sidechains are also covalently
bonded to each other. These covalent bonds place strong constraints on the distance
between atoms in a protein structure.

Because covalent interactions are strongly constrained by physicochemical rules, an
important part of the verification process for structural quality is making sure that
bond lengths, bond angles, and dihedral angles don't vary dramatically from their
allowed values. Covalent bond lengths are determined by the size and type of the
atoms involved and by the number of electrons shared between atoms. The more
electrons are shared, the shorter and stronger the bond. Bond angles are
constrained by the structure of atomic orbitals. Dihedral angles, the angles of
rotation of two bonded pairs of atoms with respect to each other around a central
bond, are constrained primarily by steric hindrance. These chemical constraints are
also used in macromolecular simulation, where they are associated with applied
forces that keep the molecule in allowed conformations.

9.2.2.2 Hydrogen bonds

Hydrogen bonds arise when two polar groups interact. The two polar groups must be
of specific types. One must be a proton donor, a chemical group in which a proton
(hydrogen atom) is covalently bonded to a strongly electronegative atom such as
oxygen. The bond between the proton and the electronegative atom is polarized,
giving the proton a partial positive charge and the electronegative atom a partial
negative charge. The other group must be a proton acceptor, an electronegative
atom with a partial negative charge and no attached proton. The positively polarized
proton in the first group is attracted to the negatively polarized second group, and
the two form a bond that isn't covalent, but is nonetheless, much shorter and
stronger than a normal nonbonded interaction. Hydrogen bonds are unusual among
nonbonded and electrostatic interactions because they are strongly directional; they
weaken if the angle described by the three atoms involved is too large or too small.

Hydrogen bond interactions are one of the most important stabilizing forces in
protein structure. The protein backbone contains a proton donor, in its N-H group,
and a proton acceptor, in its carbonyl oxygen, spaced at regular intervals along the
chain (Figure 9-6). The interaction of these groups stabilizes the two major types of
secondary structure, the alpha helix and the beta sheet (Figure 9-7). Therefore,
some structure prediction methods attempt to use the presence of potential
hydrogen bond pairs to improve the accuracy of predictions.

Figure 9-6. Proton donor and acceptor in the protein backbone

214

Figure 9-7. Hydrogen bonding in alpha helices and beta sheets

9.2.2.3 Hydrophobic and hydrophilic interactions

A much-discussed (and frequently wrongly used) concept in protein structure
analysis is that of the hydrophobic force. We've already mentioned in passing that
amino acids can be classified as hydrophobic or hydrophilic. What exactly does this
mean?

Proteins, except for those bound within cell membranes, always exist in aqueous
solution. They constantly interact with water molecules. Water is a solution that has

215

some interesting properties, and these properties contribute to the stability of the
compact globular structures that characterize cellular proteins.

Water is a polar molecule. Individual water molecules in liquid water can each form
four hydrogen bonds with neighboring water molecules. Liquid water is an essentially
uninterrupted lattice of hydrogen bonded molecules, as seen in Figure 9-8. This
unusual property contributes to the high melting and boiling points of water, as well
as to such properties as low compressibility and high surface tension. It also results
in interesting interactions of water with soluble proteins.

Figure 9-8. Hydrogen bonding in water

A nonpolar molecule dissolved in water interrupts the regular hydrogen bond lattice
of liquid water. Individual water molecules can reorient around a small nonpolar
molecule to preserve their network of hydrogen bonds, but this reorientation has a
cost in terms of free energy (which is how cost is measured in chemistry). The
presence of a nonpolar solute forces water molecules into a more ordered
conformation than they would ordinarily assume. Instead of being able to face any
which way and rotate freely, water molecules near the surface of a nonpolar solute
have to work around it and form a cage. This is entropically unfavorable.

The larger a nonpolar solute gets, the more water molecules need to reorient to
accommodate it, and the higher the energy cost of solvating the molecule becomes.
Of course, if the nonpolar solute has some polar groups on its surface, water
molecules can use those groups as hydrogen bonding partners instead of other water
molecules, and the water lattice is less disturbed. Globular proteins, which exist in
aqueous solution even though they are composed substantially of nonpolar groups,
must present a good hydrogen-bonding surface to the world. Hydrophilic amino acids
are those whose sidechains offer hydrogen bonding partners to the surrounding
medium, while hydrophobic amino acids' sidechains don't. The surface of a globular
protein is usually anywhere from 50%-75% polar atoms, and deviations in this
pattern can suggest binding or complexation sites.

Solvent accessibility and hydrophobicity play an important role in evaluating model
structures. Threading methods for protein fold recognition use amino acid
environments in evaluating models. When many hydrophobic amino acids are found
in solvent-exposed structural environments or hydrophilic amino acids buried in the
protein interior, it is considered unlikely that the protein model is folded correctly.

216

9.2.2.4 Charge-charge, charge-dipole, and dipole-dipole interactions

Unlike covalent bonds, the other important interactions in protein structure are
nonspecific. They don't change the discrete nature of the interacting atoms. They
involve no sharing of electrons. Covalently bonded atoms are married; noncovalently
bonded atoms are just shacking up.

Several kinds of important forces can arise among polar and charged atoms. An ion
is an atom that has a net positive or negative charge due to either a surplus or a
deficit of electrons. Atoms that carry a positive ionic charge are attracted to atoms
that carry a negative ionic charge, with a strength that depends on the size of the
charges and the inverse of the distance between the atoms. In proteins, charge-
charge interactions occur between the sidechains of acidic and basic amino acids that
are negatively charged or positively charged due to loss or gain of a labile proton
under normal physiological conditions. The charge-charge interactions between
amino acids in a protein structure are called salt bridges, and they can contribute a
significant stabilizing force to a protein structure.

There are other, weaker interactions that occur between charges and groups that
don't carry a positive or negative ionic charge. Dipolar molecules are molecules like
those involved in hydrogen bonds, in which one end of the molecule has a partial
positive charge and the other end has a partial negative charge. The dipole of a
molecule is essentially a vector that describes the magnitude of the polarization
along a bond. Dipolar molecules can be strongly attracted to other partial charges or
to ionic charges. Many amino acid sidechains, as well as the protein backbone, have
a strongly dipolar character, so charge-dipole and dipole-dipole interactions play a
substantial role in stabilization of protein structure.

9.2.2.5 Van der Waals forces

The van der Waals force is a nonspecific attractive force between molecules. This
force is loosely analogous to gravity, in that it exists between every pair of
nonbonded atoms, and it's a fairly long-range force. However, it doesn't arise simply
from the mass of the atoms involved, but from the transient attractive forces
between the instantaneous dipole moments of each atom. The van der Waals force is
quite strong, and because van der Waals interactions are nonspecific and numerous
they play a significant role in protein folding and protein association.

9.2.2.6 Repulsive forces

Repulsive forces, or steric interactions, are very short range forces that increase
sharply as atomic centers approach each other. The radius at which the repulsive
force begins to increase sharply defines a spherical boundary around each atom
center inside which another atom's spherical boundary (called the van der Waals
radius) can't pass. If two nonbonded atoms in a structure get into each other's
personal space, the contact is energetically unfavorable. In real molecules, atoms
stay out of each other's way. However, in models of molecules, whether derived from
NMR or x-ray data or built from scratch, checking for van der Waals bumps between
nonbonded atoms is an important part of the structure-refinement process.

9.2.2.7 Relative strength of interatomic forces

217

The interaction between atoms can be described by a pair potential, such as the
Lennard-Jones potential (Figure 9-9), which includes both an attractive and a
repulsive term. The form of the potential shows that atoms tend to repel each other
at very short range (positive potential energy indicating an unfavorable interaction)
but to attract each other at slightly longer range. The strength of the attraction
decays with distance, depending on the forces modeled.

Figure 9-9. Plot of Lennard-Jones potential

When making inferences about structural stability or function based on
intermolecular interactions, it is important to understand the relative strengths of
these interactions, and how they scale with distance (Table 9-1).

Table 9-1. How Interatomic Forces Scale with Distance
Type of Bond Range of Interaction

Covalent Complicated short range
Hydrogen bond Roughly 1/r2
Charge-charge Scales with 1/r
Charge-fixed dipole Scales with 1/r2
Charge-rotating dipole Scales with 1/r4
Fixed dipole-fixed dipole Scales with 1/r3
Rotating dipole-rotating dipole Scales with 1/r6
Charge-nonpolar Scales with 1/r4
Dipole-nonpolar Scales with 1/r6
Nonpolar-nonpolar Scales with 1/r6

In Table 9-1, r represents the distance between two atoms in angstroms.
Interactions that decrease in strength with 1/r are effective at a much longer range
than those that decrease in strength with higher powers of r. Covalent interactions
and hydrogen bonds are strong, and very energetically significant at short distances.
Charge-charge interactions have some of the longest-range effects; electrostatic
effects on protein activity have been experimentally shown at over 15-angstrom
distance, a substantial range in molecular terms. A concentration of charges on a

218

protein surface can create a powerful electrostatic steering effect that can attract
ligand molecules or other proteins at even longer range. Hydrogen bonds and
charge-dipole interactions are also relatively strong. The effects of these interactions
are modeled by computing electrostatic potentials and using the computed potentials
as the basis for calculating other molecular properties such as binding constants (via
Brownian dynamics) or pKa values.

On the other hand, interactions between noncharged and nonpolar atoms are very
weak and effective only at short range. However, the effects of these interactions
can be cumulative, stabilizing structure and making intermolecular associations more
favorable. The effects of these interactions are addressed when you compute the size
of intermolecular contact surfaces or enumerate interactions between neighboring
interactions in a protein. In the remainder of this chapter, we discuss various
methods for measuring and evaluating atomic structures of proteins, all of which can
be used together to add to your understanding of protein chemistry.

9.3 Web-Based Protein Structure Tools
Now that we've reviewed the basics of protein chemistry, let's turn our attention to
the tools. The most important source of information about protein structure is the
PDB. In addition to being an entry point to the structural data itself, the PDB web
site (http://www.rcsb.org/pdb) contains links to many tools database you can apply
to individual protein structures as you search the database. Information from the
database is made available through the Protein Structure Explorer interface. For each
protein, you can view the molecular structure using 3D display tools such as RasMol
and the Java QuickPDB viewer. PDB files and file headers can be viewed as HTML and
downloaded in a variety of formats. Links to the protein structure classification
databases CATH, FSSP, and SCOP are provided, along with the tools CE and VAST,
which search for structures based on structural alignment. Average geometric
properties, including dihedral angles, bond angles, and bond lengths can be
displayed in tabular format with extremes and deviations noted. Sequences can be
viewed and labeled according to secondary structure, and sequence information
downloaded in FASTA format.

You can go directly to the page for a particular protein of interest by entering that
protein's four-letter PDB code in the Explore box on the PDB's main page. The PDB
can also be searched using two different search tools, SearchLite and SearchFields.
SearchLite is a simple search tool that allows you to enter one or more search terms
separated by boolean operators into a single search field. SearchFields is a tool for
advanced searches that provides a customizable search form that allows you to use
separate keywords to search each PDB header field. You can modify the form by
selecting checkboxes at the bottom of the form and regenerating the form.
SearchFields supports options for searching a dozen of the most important fields in
the PDB header, as well as crystallographic information. SearchFields also allows the
database to be searched using FASTA for sequence comparison, as well as secondary
structure features or short sequence features.

From the individual protein page generated by the Structure Explorer, the PDB
provides a menu of links through which to connect to other tools. These features are
still evolving rapidly. Table 9-2 provides a brief overview of the PDB protein page.
We also encourage you to explore the PDB site regularly if you are interested in tools
for protein structure analysis.

219

Table 9-2. PDB Summary Information
Page Description

Summary page
The Summary page shows important information from the PDB
header, as well, the chain composition of the protein and
chemical information about any ligands and cofactors.

View Structure
The View Structure page provides links to everything from static
images to interactive protein views using VRML, RasMol, and the
PDB's Protein Explorer tool.

Download/Display
File

The Download page offers several options for downloading
individual protein structures and headers in both classic PDB
format and the new mmCIF format.

Structural
Neighbors

The Structural Neighbors page links to manually curated protein
classification databases, such as SCOP and CATH, as well as the
automated protein structure comparison tools CE and VAST.

Geometry The Geometry page provides tabular views of bond length, bond
angle, and dihedral angle data for the protein.

Other Sources

The Other Sources page is a rich catalog of links for each protein
to everything from its SWISS-PROT accession code to literature
references describing the structure. From this page, you can
generate everything from domain analyses to structural quality
reports to searches of genome catalogs and the NCBI Taxonomy
database.

Sequence Details
The Sequence Details page shows the sequence of the protein
and the location of its secondary structure features, as extracted
from the crystallographic data. The sequences of the individual
protein chains in a PDB entry are also available for download in
FASTA format.

We'll discuss the specifics of some of the tools linked from the PDB web site in the
upcoming sections. Again, as with any web-based tool, it's a good idea to learn as
much as you can about the underlying algorithms before basing any conclusions on
their results. Just because a method is endorsed by the PDB, doesn't mean that it's
100% foolproof, or that you can interpret results without understanding the method.

9.4 Structure Visualization
One of the first tools developed for structure analysis and one of the first analyses
you will probably want to do is simply structure visualization. Protein structure data
is stored as collections of x, y, z coordinates, but proteins can't be visualized simply
by plotting those points. The connectivity between atoms in proteins has to be taken
into account, and for the visualization to be effective, a virtual 3D environment,
which provides the illusion of depth, needs to be created. Fortunately, all this was
worked out in the 1970s and 1980s, and there are now a variety of free and
commercial structure visualization tools available for every operating system.

Even with virtual 3D representation, protein structures are so complex that they are
difficult to interpret visually. The human eye can interpret 3D solids, but has a
difficult time with topologically complex 3D data sets. There are a number of
conventional simplified representations of protein structure that allow you to see the
overall topology of the protein without the confusion of atomic detail. In order to be

220

useful, a protein structure visualization program needs to, at minimum, be able to
display user-selected subsets of atoms with correct connectivity, draw standard
cartoon representations of proteins such as ribbons and cylinders, and recolor
subsets of a molecule according to a specified parameter.

9.4.1 Molecular Structure Viewers for Your Web Browser
One type of molecular structure viewers are lightweight applications that can be set
up to work with your web browser. When properly configured, they will display
molecular data as you access it on the Web. RasMol and CnD3 are two of the most
popular viewers.

9.4.1.1 RasMol

One of the most popular molecular structure visualization program tools is RasMol. It
is available for a wide range of operating systems, and it reads molecular structure
files in the standard PDB format. RasMol 2.7.1, the most up-to-date version, can be
downloaded from Bernstein and Sons (http://www.bernstein-plus-sons.com). Either
source code or precompiled binary distributions can be downloaded.

RasMol comes in three display depths: 8-, 16-, and 32-bit. Eight-bit is the default,
but if you have a high-resolution monitor, you may have to experiment and find out
which executable is right for your system. You'll know you have a problem when you
try to run RasMol and it complains that no appropriate display has been detected.
Start with the 8-bit version, and work your way up.

If you plan to compile RasMol yourself, you need to get into the src directory and
edit the Makefile to produce the appropriate version. To do this, open the Makefile
with an ASCII text editor such as vim or Emacs and search for the variable
DEPTHDEF. You should find something like this:
DEPTHDEF = -DTHIRTYTWOBIT
DEPTHDEF = -DSIXTEENBIT
DEPTHDEF = -DEIGHTBIT

In this example, DEPTHDEF has been defined as 16-bit.

The # character at the beginning of a line marks that line as a comment, which isn't
read by the make program when it scans the Makefile. Lines of code can be skipped
over by being commented out; that is, marked as a comment. Remove the #
character in front of the depth definition you need to use, and add it to comment out
the others. Comment characters vary from programming language to programming
language, but the notion of a comment line is common to all standard languages.

You may also need to edit the rasmol.h file, according to the install instructions.

Once you have the proper RasMol executable, whether you download it or compile it
yourself, you need to copy it into /usr/local/bin and copy the file rasmol.hlp into the
directory /usr/local/lib/rasmol. Then, in your web browser's preferences, you need to
add RasMol as an application. If you're using Netscape, the default browser on most

221

Linux systems, go to the Preferences?Navigator?Applications menu, select New, and
enter the following values into the dialog box:
Description: Brookhaven PDB
MIMEType: chemical/x-pdb
Suffixes: .pdb
Application: /usr/local/bin/rasmol

You may also want to create a second entry for the MIME type chemical/x-ras.

When run from the command line, RasMol opens a single graphics display window
with a black background. The molecule can be rotated in this window either directly
with the mouse, or with the sliders on the bottom and right side of the window. This
window has five pulldown menus. The File menu contains commands for opening
molecular structure files. The Display menu contains commands for changing the
molecular display style to formats including ball and stick, cartoons, and spacefill.
These display commands execute quickly, so you can try each of them out to see the
different standard molecular display formats. The Colours menu allows you to change
the color scheme of the entire molecule, and the Options menu changes the display
style, allowing you to display the molecule in stereo, turn the display of heteroatom
groups or labels on and off, etc. The Export menu allows you to write the displayed
image in common electronic image formats such as GIF, PostScript, and PPM, which
can be edited later using standard image manipulation programs that come with
most Linux distributions, such as GIMP.

When you import or save files in RasMol, you do it from the RasMol command line. In
the shell window from which you start RasMol, the command prompt changes to
RasMol >. Enter help commands at this command prompt to see the full range of
RasMol commands, including commands for selecting subsets of atoms. If RasMol
complains that it can't find its help file, create a symbolic link to
/usr/local/lib/rasmol/rasmol.hlp in the directory in which you installed RasMol and/or
the directory in which you are running it. Help commands allow you to create your
own combinations of colors and structure display formats, including some not
available from the menus; create interatomic distance monitors; and display some
intermolecular interactions, such as hydrogen bonds and disulfide bridges.

9.4.1.2 Cn3D

Cn3D is an application from NCBI that can view protein structure files in NCBI ASN.1
format. If you use the NCBI databases frequently, you will also want to install this
tool and set it up to work as an application in your browser.

To install Cn3D on a Linux workstation and set it up as a browser application, you
simply need to download the Cn3D archive from NCBI, make a Cn3D directory on
your own machine, move the archive into that directory, and extract it.

Then, in your web browser's application preferences, make the following new entry:
Description: NCBI ASN.1
MIMEType: chemical/ncbi-asn1-binary
Suffixes: .prt
Application: /usr/local/cn3d/Cn3D

222

Cn3D opens two windows: a color structure viewer, in which a molecule can be
rotated, colored according to different properties, and rendered in different display
formats; a sequence viewer, which allows you to view sequences and alignments
corresponding to the displayed protein and to add graphics to the sequence display
to highlight the location of secondary structure features.

9.4.1.3 SWISS-PDBViewer

The SWISS-PDBViewer is a relatively new 3D structure display and analysis tool that
complements the services offered by the Swiss Institute of Bioinformatics. It can be
used to prepare input for homology modeling using the SWISS-Model web server.
However, it is also useful as a standalone visualization tool. The viewer incorporates
many useful functions, including superimposition of structures, calculation of
molecular surfaces and electrostatic potentials, high-quality rendering, analysis of
torsion angles, creation of mutations to the structure, and much more. At the time of
this writing, SWISS-PDBViewer is in a phase of rapid development; if interested, you
should check the Swiss Institute of Bioinformatics web site for the current version
and online documentation.

9.4.2 Standalone Modeling Packages
Heavy-duty molecular structure viewers tend to have many more features than web
applications such as RasMol and Cn3D. The most popular examples are MolMol,
MidasPlus, and VMD. These programs run on your desktop machine, and to use them
you need copies of the PDB files you're interested in using already stored on your
computer.

9.4.2.1 MolMol

If you have Cn3D and RasMol linked to your web browser, you are well-equipped to
view any molecular structure on the fly. However, there are times when you need to
do more extensive manipulations of a molecular structure. MolMol is a full-featured
molecular structure visualization package that allows you to display molecules, edit
structures, and compute molecular properties.

You run the MolMol program by issuing the command molmol from the command
line. There are no command-line options. The program opens with one large window
with a white background, and a separate smaller window, which contains sliders for
x, y and z rotation and for changing depth and position of the clipping plane. The
clipping plane controls the simulated depth of the display window and the point at
which the display window intersects the molecular structure. Atom selection options
are controlled from the menu bar to the right of the main window.

Like RasMol, MolMol has pulldown menus, but all its options are available from the
pulldown menus, and there are substantially more of them. MolMol has a complete
manual, which is distributed, along with the software, in HTML, and several printable
formats, so we will not discuss each command here in detail. Some MolMol features
you may find useful, in addition to the standard molecular display functions, are the
display of Ramachandran and contact maps, calculation and display of
macromolecular surfaces, and display of qualitatively accurate electrostatic
potentials.

223

MolMol is available as a binary distribution from ETH Zurich and is simple to install on
a Linux workstation. Follow the directions provided, and you can't go wrong. While
the MolMol interface isn't quite as slick as that of a commercial product like MSI's
Quanta, it is an amazing value for the price. A couple of general tips: be sure to
close dialog boxes and windows by clicking on their OK buttons or by selecting Quit
from the menus, rather than by clicking the Kill Window button at the top-right
corner. If the program seems to need to take its time to do something, don't click a
lot of extra buttons or try to force it to close down—just wait. This will keep the
program from hanging up your machine.

9.4.2.2 MidasPlus

MidasPlus is a near commercial-quality molecular modeling package available from
the University of California at San Francisco. It provides many standard molecular
display functions, as well as tools for measurement, limited modeling capabilities (for
instance, the ability to substitute amino acids in the structure), and computation of
molecular surfaces and electrostatics. The MidasPlus source code and executables for
various platforms, including some Linux systems, are available from UCSF for a
licensing fee of $350 —much less than comparable commercial software packages.
Your Linux workstation must be equipped with a good-quality 3D graphics card in
order to support MidasPlus.

9.4.2.3 VMD

Another excellent package for creating molecular graphics is VMD, the Visual
Molecular Dynamics program from the Theoretical Biophysics group at the University
of Illinois. VMD was designed to visualize and animate trajectories from molecular
dynamics simulations, but it can also produce quite nice visualizations of single
molecules. VMD is available for Linux systems and has an easy-to-use, menu-driven
graphical user interface.

9.4.3 Creating High-Quality Graphics with MolScript
Usage: molscript -in infile -[options] -out outfile
Usage: molauto -[options] infile > outfile

MolScript has a completely different purpose from the other visualization packages
we have discussed. It is designed to produce high-quality graphics for print
publication, as you can see in Figure 9-10. It can be configured to run from the
command line and to produce PostScript, Raster3D, and VRML output only; it can
also be configured to run interactively in its own window, using OpenGL, and to
produce output in many additional image file formats.[1]

[1] The image in Figure 9-10 was contributed by Per J. Kraulis, from "MOLSCRIPT: A Program
to Produce Both Detailed and Schematic Plots of Protein Structures," Journal of Applied
Crystallography (1991), vol. 24, pp. 946-950.

Figure 9-10. A sample image generated by molscript

224

Setting up interactive MolScript with OpenGL on a Linux workstation isn't
straightforwRasMolard; it requires the installation of Mesa (open source OpenGL)
libraries and customization of the Makefile that comes with the distribution. However,
the basic MolScript installation is quick and simple and can produce visually
appealing line drawings of molecular structure cartoons in color or black and white,
in a style that is uniquely elegant and appropriate for print media. To install the basic
version of MolScript, simply follow the directions in the install file. Copy the resulting
executables (molscript and molauto) to your /usr/local/bin directory or to another
directory in your default path. Here's what molscript and molauto do:

molscript

The main MolScript program; generates images

molauto

The MolScript setup program; automatically generates a rudimentary
MolScript input file from an input PDB file

MolScript takes two input files: a MolScript command file and a PDB coordinate file.
Here's the MolScript input file that produced the images in Figure 9-10:

225

! MolScript v2.1 input file
! generated by MolAuto v1.1.1
title "MYOGLOBIN (FERRIC IRON - METMYOGLOBIN)"
plot

read mol "1MBN.pdb";
transform atom * by centre position atom *;
set segments 2;
set planecolour hsb 0.6667 1 1

coil from 1 to 3
set planecolour hsb 0.619 1 1
helix from 3 to 18
set planecolour hsb 0.5714 1 1
coil from 18 to 20
set planecolour hsb 0.5238 1 1
helix from 20 to 35
...
coil from 94 to 100
set planecolour hsb 0.1429 1 1
helix from 100 to 118
set planecolour hsb 0.09524 1 1
coil from 118 to 125
set planecolour hsb 0.04762 1 1
helix from 125 to 148
set planecolour hsb 0 1 1
coil from 148 to 153;

set colourparts on
bonds in require residue 1 and type HEM;

end_plot

The MolScript scripting language is unique and not really based on any standard
computer language. The only way to learn it is to decide what you want to do, study
the manual and examples, and learn the language. The example just shown is a
simple MolScript command file; it reads in a single molecule, centers it on the
molecule's center of mass, defines the locations of the various secondary structure
elements and shades them through the spectrum from red to blue. MolScript can
produce much more complex figures than this, however. MolScript plots can be
scaled and multiple plots shown on a single page. Subsets of atoms in the molecule
can be turned on, displayed in different formats, and custom colored. Labels can be
added to figures.

Fortunately, the molauto program automatically produces simple input files for the
molscript program, which can help you get started using the MolScript command
language. molauto does the most tedious part of input file setup for you—assigning
helix, sheet, or coil drawing styles, and colors, to each segment of secondary
structure. molauto has a variety of command-line options, which you can access by
entering molauto -h. molauto reads input in the standard PDB file format, and writes
to standard output unless a redirector is used.

The following are some of the most useful command line options for molauto:

-ss_pdb

226

Reads secondary structure assignments from the PDB file

-ss_hb

Uses hydrogen bonding patterns to assign secondary structure

-cylinder

Uses cylinders to indicate alpha helices

-stick

Renders cofactor molecules using a ball-and-stick representation

-nocolour

Leaves out the coloring commands

-nice

Improves the quality of the rendering, using more colors and segments

The output of the molauto program is an input for the main molscript program.
Command-line options for molscript include:

-ps

Produces PostScript output

-v

Produces VRML output

-size width height

Changes the size of the output image

The default input files produced by molauto can be hand-edited to produce various
effects. One important thing you might want to do (and can't do automatically unless
you have installed the MolScript package with OpenGL support) is to rotate the
molecular structure until you achieve a good view.

To rotate the molecule view using the noninteractive version of molscript, add the
following lines to your molscript input file, replacing the line that currently reads:
transform atom * by centre position atom *;

with:
transform atom * by centre position in amino-acids

227

by rotation x 0.0
by rotation y 0.0
by rotation z 0.0

; !Be sure to include this
semicolon.

After you generate your first version of the image, open it in a fast PostScript viewer
such as gv. To change the view of the molecule, experiment with changing the
values of x, y, and z rotation in your input file. Since molscript takes only seconds to
run on any protein input file, you can make changes to the input file, save the file,
and redisplay the new output several times until you like the view.

Once generated, the molscript image file can be viewed, converted to other file
formats, and edited using standard Unix image-manipulation tools. One program you
can load when you install most major Linux distributions is GIMP, the freeware
package similar to Adobe Photoshop.

9.4.4 Active Site Visualization with LIGPLOT
Usage: ligplot protein.pdb resid resid chain

Another useful tool for producing graphics for publication is the program LIGPLOT
(http://www.biochem.ucl.ac.uk/bsm/ligplot/ligplot.html), which is available from the
Structure and Modelling group at University College London (UCL). Given a molecular
structure and a specific residue or heteroatom group within the structure as input,
LIGPLOT automatically generates a 2D schematic drawing showing hydrogen bonds,
interatomic contacts, and solvent accessibility. A sample of LIGPLOT is shown in
Figure 9-11

Figure 9-11. A schematic diagram of ligands to the heme cofactor in
cytochrome B5, generated with LIGPLOT

228

To install LIGPLOT on a Linux workstation, simply follow the directions in the
README file.

In order for LIGPLOT to find its parameter files and helper programs correctly, you
need to add some path information to your .cshrc file:
setenv ligdir /usr/local/ligplot
alias ligplot $ligdir'/ligplot.scr'
alias ligonly $ligdir'/ligonly.scr'
alias dimplot $ligdir'/dimplot.scr'
alias dimonly $ligdir'/dimonly.scr'
setenv hbdir /usr/local/hbplus
alias hbplus $hbdir'/hbplus'

The values on the command line specify a residue range in a particular protein chain.
The program doesn't have to display only interactions with ligands and prosthetic
groups; it can also display the network of close interactions with any residue in a
protein. This works best when the residue range selected is small.

9.4.5 dimplot
Usage: dimplot protein.pdbchain1chain2
Usage: dimplot protein.pdb -d domain1 domain2

The dimplot program, a variant of LIGPLOT, displays interactions across an interface
between two protein chains or domains. The domain variant works only if your PDB
file labels proteins at the domain level of organization.

229

The painful part of installing the LIGPLOT, hbplus, and naccess programs on some
Linux systems is, ironically, not the installation itself, but having the capability to
decrypt the encrypted archives you get from UCL. The files are encrypted using the
standard Unix crypt command. This sounds straightforward enough, but many Linux
vendors don't include crypt in their distributions. In order to use crypt on your
system, you may in fact need to reinstall the latest version of glibc-2.0. If you don't
want to deal with this, request a decrypted copy of the LIGPLOT tar archive from the
authors when you send in your license agreement.

9.5 Structure Classification
Protein structure classification is important because it gives you an entry point into
the world of protein structure that is independent of sequence similarity. Proteins are
grouped not by functional families, but according to what kind of secondary structure
(alpha helix, beta sheet, or both) they have. Within those larger classes, subclasses
are defined based on how the secondary structures in the protein are arranged.

The focus in protein classification is on finding proteins that have similar chemical
architectures; it doesn't matter if their sequences are related. Over the years, we've
learned from classification that there are far fewer unique protein folds than there
are protein sequence families. Protein chemists often are interested in the
information that can be extracted from broader structural classes of proteins, since
analyzing that information can help them better understand how proteins fold.

Classification of protein structures into families is a nontrivial task. Proteins have
many levels of structure: the primary structure, which is the 1D sequence; the
secondary structure, which is composed of the regular substructures that the protein
polymer forms due to steric and hydrogen bond interactions; the tertiary structure,
which is the overall 3D structure of the protein; and the quaternary structure, which
is the most complex protein structure composed of multiple chains. The quaternary
structure is required to form a functional protein. Structure classification involves
developing a representation of how units of secondary structure come together to
form domains, which are compact regions of structure within the larger protein
structure. Dividing proteins into domains is another aspect of structure classification.

There isn't really a consensus as to how to classify protein structures quantitatively.
Instead, structures end up in qualitatively named classes such as "greek key," "helix
bundle," and "alpha-beta barrel." These fold classes are useful in that they draw
attention to prominent structural features and create a frame of reference for
classifying structure. However, qualitative classifications don't lend themselves to
automated analysis, and such protein classification databases still require the
involvement of expert curators.

If you're simply concerned with finding the close structural relatives of a published
protein structure, there are a number of online classification databases in which
existing structures have been annotated by a combination of automated analysis and
input from protein structure experts. There are also automated tools for finding
structural neighbors by structure alignment, though like any alignment method,
these tools require you to understand the significance of comparison scores when
analyzing results.

230

If you're interested in doing your own analysis of a protein structure, there are
several structure classification processes and tools that might help.

9.5.1 Secondary Structure from Coordinates
Protein coordinate data sets don't automatically come labeled with alpha-helix and
beta-sheet classifiers. Secondary structure features in the protein can be
distinguished with reasonable certainty by their hydrogen bonding patterns and their
backbone torsion angles.

The standard program for extracting secondary structure from sequence is the DSSP
program. DSSP analyzes the geometry and backbone hydrogen bonding partners of
each residue in a known protein structure, producing a tabular output that includes
residue numbering, sequence, hydrogen bonding, and geometry details. The DSSP
database, and DSSP executables derived from the 1995 release of the program, are
available from the European Bioinformatics Institute (EBI); these executables may
still cause Y2K-related errors on some older Linux systems. Updated DSSP source
code is available from the Gerrit Vriend at the Center for Molecular and Biomolecular
Informatics at the University of Nijmegen, Netherlands.

9.5.1.1 STRIDE

Usage: stride -[options] infile > outfile

An alternative to DSSP is the program STRIDE, offered in either web server or
downloadable form at the European Molecular Biology Laboratory (EMBL,
http://embl-heidelberg.de/stride/stride.html/). STRIDE compiles easily on a Linux
machine. Create a directory for the program, move the tar archive into the directory,
and extract. Compile the program with make.

Command-line options for STRIDE include:

-M molscript file

Produces a simple MolScript input

-h

Reports hydrogen bond information

-o

Reports secondary structure assignments only

A complete list of commands can be viewed by running STRIDE with no command-
line options.

The STRIDE output format is in structured 78-character lines. The following example
illustrates the hydrogen bond information output format:

http://embl-heidelberg.de/stride/stride.html/

231

ACC ALA - 143 142 -> TYR - 146 145 3.3 107.8 125.8 58.5
76.9 1MBN

ACC ALA - 143 142 -> LYS - 147 146 3.2 154.3 113.4 0.1
43.4 1MBN
DNR ALA - 144 143 -> LYS - 140 139 3.0 153.6 109.9 16.4
27.2 1MBN

ACC ALA - 144 143 -> GLU - 148 147 3.0 160.3 109.4 11.6
6.4 1MBN
DNR LYS - 145 144 -> ASP - 141 140 3.2 145.3 119.5 3.7
73.8 1MBN

ACC LYS - 145 144 -> LEU - 149 148 3.0 149.4 128.8 4.7
63.7 1MBN
DNR TYR - 146 145 -> ILE - 142 141 3.2 158.7 121.8 20.1
52.6 1MBN
DNR TYR - 146 145 -> ALA - 143 142 3.3 107.8 125.8 58.5
76.9 1MBN

ACC TYR - 146 145 -> GLY - 150 149 3.0 156.9 96.3 37.1
37.7 1MBN

ACC TYR - 146 145 -> TYR - 151 150 3.1 111.2 118.0 4.2
89.9 1MBN
DNR LYS - 147 146 -> ALA - 143 142 3.2 154.3 113.4 0.1
43.4 1MBN

The STRIDE source code is well constructed and documented. It's an excellent
example of how molecular geometry is analyzed. Each function, e.g., surface area
calculation, torsion angle calculation, etc., lives in its own separate program. If you
want to understand many of the standard operations involved in analyzing geometric
properties of proteins, we highly recommend the STRIDE source code.

9.5.2 Topology Cartoons
Topology cartoons are a 2D notation for depicting the topological arrangement of
secondary structural elements in proteins. The cartoons can clarify the spatial
relationships and connectivity between secondary structure elements in a protein.
These relationships may not be easily seen in a 3D structure, even if only the
structural backbone is displayed or a ribbon diagram is drawn. Software for
generating your own cartoons may be found on the Protein topology page,
http://www.sander.embl-ebi.ac.uk/tops/.

Topology cartoons, as illustrated in Figure 9-12, represent each secondary structural
unit as a shape. Circles are helices, and triangles are beta strands. The beginning of
the chain is marked with an N, the end with a C. Each element has a directionality,
which can be deduced from the way the connecting segment is drawn. If the N-
terminal connection is to the edge of the secondary structural element, that element
is directed out of the plane of the drawing; if the N-terminal connection is to the
center of the secondary structural element, it is directed back into the plane of the
drawing.

Figure 9-12. A protein topology cartoon

http://www.sander.embl-ebi.ac.uk/tops/

232

9.5.2.1 TOPS

Usage: tops pdbcode

The TOPS program expects a file in DSSP format, generated from your protein of
interest, as its input.

In order to compile the TOPS code on your own machine, you need Java support.
Linux ports of Java are available from IBM and Blackdown at http://blackdown.org.
The Blackdown version requires that you update to glibc2.1.2, but the IBM version
installs easily under Red Hat 6.1 using GnoRPM (if you download RPMs, of course).
Once the IBM JRE and JDK are installed, TOPS installs without any difficulty. To run
the EditTOPS executable, which allows you to actually view and plot topology files,
be sure that these environmental variables are set correctly:

PATH

Includes /usr/jdk118/bin (or wherever you installed Java)

CLASSPATH

Where you installed TOPS classes TOPS.jar

TOPS_HOME

Where you installed TOPS

You can set these variables by writing a script called topssetup, which contains the
following three lines, and placing it in your home directory. Before you try to run
TOPS or EditTOPS, use source topssetup to set the environment variables correctly.
setenv PATH "/usr/sbin:/sbin:/usr/jdk118/bin:${PATH:."
setenv CLASSPATH "/usr/local/Tops/classes/TOPS.jar:${CLASSPATH"
setenv TOPS_HOME "/usr/local/Tops"

Topology patterns also have been implemented as data structures in web-based
search tools that allow you to compare topologies of two structures or to search a
protein database for structures of similar topology. These services are available from
the EBI at http://www.ebi.ac.uk.

9.5.3 Classification Databases

http://blackdown.org
http://www.ebi.ac.uk

233

Classification databases are taxonomies of protein structure, and they bear a strong
resemblance to the morphology-based taxonomies developed by early biologists.
Proteins that "look" grossly the same, in terms of shape and topology, are classified
as more closely related than proteins that look substantially different. Protein
structure types have whimsical names (like Greek key beta barrel) based on visual
observation and comparison with familiar objects. The classification databases can be
envisioned as trees with many branchings at each branch point—very similar to
phylogenetic trees, in concept.

9.5.3.1 SCOP

The Structural Classification of Proteins (SCOP, http://scop.mrc-
lmb.cam.ac.uk/scop/) is a database maintained by the MRC Laboratory of Molecular
Biology at Cambridge, United Kingdom. SCOP is extensively hand-curated, and tends
to lag at least several months behind the PDB in terms of its content. SCOP is a
simple, relatively low-tech resource composed of a hierarchy of HTML pages with
links to still pictures of individual proteins and folds, as well as embedded links to
structure files to be opened with RasMol or Chime plugins and links back to the PDB
to download structures.

At the top level of SCOP, known proteins are generally grouped by their secondary
structure characteristics into all-alpha, all-beta, coiled coil, small proteins with
structural metal ions, and various types of mixed alpha-beta structures. These major
types are called Classes within SCOP. The next layer of classification, the Fold level,
is a mixture of topology and similarity to domains of known function: one fold can be
called "globin-like" and the next "four helical up and down bundle." Beyond the Fold
level, proteins are divided further into Superfamilies and Families. Superfamily and
Family divisions may be purely functional, or they may also involve some structural
difference.

9.5.3.2 CATH

CATH (http://www.biochem.ucl.ac.uk/bsm/cath_new/) is similar to SCOP in concept,
but it divides up the PDB a little differently. In CATH, proteins are classified at the
level of (C)lass, (A)rchitecture, (T)opology, and (H)omologous superfamily. The
CATH interface is easily navigated, and it is an excellent resource for examining the
variety of known protein structures. CATH can be searched by PDB code, and
proteins can be displayed within the browser page. The CATH maintainers provide an
excellent lexicon of protein structure description to give you a feel for the structural
reality behind the somewhat whimsical protein family names. At the time of this
writing, the CATH web interface is undergoing rapid revision and expansion of its
capabilities, to include everything from structural assignments of uncharacterized
genes that may fit into CATH classes, to new levels of classification hierarchy.

9.5.3.3 Unique protein structure data sets

The PDB is full of duplication. It's been estimated that out of the approximately
13,000 structures in the PDB at this time, only around 1,000 of them actually
represent unique folds. This lack of uniqueness can bias predictive and analytical
methods based on extraction of structural patterns and features from the protein
database. Thus, there is a need to produce nonredundant subsets of the PDB and to
select, from among groups of similar proteins, the best representative of each class.

http://scop.mrc-

234

This is essentially a subset of the classification problem, and for a long time it was
done based on manual examination and annotation of PDB data. But as the PDB has
grown, automated methods for generating nonredundant data sets based on
sequence comparison have emerged.

The process for generating such data sets is fairly standard, although the particular
parameters differ. First, the PDB is culled to remove extremely short protein chains,
chains of very poor resolution, and chains containing a large number of nonstandard
residues. The PDB is then decomposed into individual chains, and the chains are
sorted by various quality criteria. An all-against-all sequence comparison is done,
and chains that don't differ sufficiently to meet a certain cutoff are removed,
choosing the lowest-quality chain in a pair to be removed, until all the chains in the
list meet the uniqueness criteria in a pairwise comparison. Finally, the removed
chains are reintroduced and added back to the set if they don't violate the
uniqueness criteria with any other chain in the final set.

At this time, nonredundant data sets can be obtained from PDB Select, at EMBL,
from NCBI, and from Dr. Roland Dunbrack at the Fox Chase Cancer Center. There is
no software we know of that allows you to create a unique data set based on your
own choice of parameters, although the groups mentioned may be willing to
generate data sets by special request. A Perl script for creation of nonredundant
databases from a sequence DB, called nrdb90.pl, is also available from EBI;
however, it's hardcoded to produce a nonredundant set at the 90% sequence
identity level. If you're intrepid, you can modify this script for your own purposes.

9.6 Structural Alignment
Recently, there have been many attempts to make protein-structure classification an
automatic and quantitative process, rather than an expert-curated process.
Overlaying and comparing structures is a 3D problem that is much more resource-
intensive than comparing 1D sequence data. The automated structure comparison
tools that exist, therefore, are available primarily as online tools for searching
precomputed databases of structure comparisons.

9.6.1 Comparing Two Protein Structures
The most common parameter that expresses the difference between two protein
structures is RMSD, or root mean squared deviation, in atomic positions between the
two structures. RMSD can be computed as a function of all the atoms in a protein or
as a function of some subset of the atoms, such as the protein backbone or the
alpha-carbon positions only. Using a subset of the protein atoms is common,
because it is likely that, when two protein structures are compared, they will not be
identical to each other in sequence, and therefore the only atoms between which
one-to-one comparisons in position can be made will be the backbone atoms.

This is the first context we've discussed in which the orientation of a molecular
structure becomes important. Because protein structures are generally described in
Cartesian coordinates, they essentially exist within a virtual space, and they come
with a built-in orientation with respect to that space. RMSD is a function of the
distance between atoms in one structure and the same atoms in another structure.
Thus, if one molecule starts out in a different position with respect to the reference

235

coordinate system, the other molecule—the RMSD between the two proteins—will be
large whether they are similar or not.

In order to compute meaningful RMSDs, the two structures under consideration must
first be superimposed, insofar as that is possible. Superimposition of protein
structures usually starts with a sequence comparison. The sequence comparison
establishes the one-to-one relationships between pairs of atoms from which the
RMSD is computed. Atom-to-atom relationships, for the purpose of structure
comparison, may actually occur between residues that aren't in the same relative
position in the amino acid sequence. Sequence insertions and deletions can push two
sequences out of register with each other, while the core architecture of the two
structures remains similar.

Once atom-to-atom relationships between two structures are established, the task of
a superposition program is to achieve an optimal superposition between the two
programs—that is, the superposition with the smallest possible RMSD. Because
protein scaffolds, or cores, can be similar in topology without being identical, it isn't
usually possible to achieve perfect overlap in all pairs of atoms in two structures that
are being compared. Overlaying one pair of atoms perfectly may push another pair
of atoms further apart. Superposition algorithms optimize the orientation and spatial
position of the two molecules with respect to each other.

Figure 9-13 shows an optimal alignment between atomic structures of
triosephosphate isomerase and beta-mannase, shown in Compare3D. The two
structures are similar enough to be classified as structural neighbors, and their chain
traces are relatively similar. However, their sequence identity is only 8.5%.

Figure 9-13. An optimal superposition of myoglobin and the 4 chain of
hemoglobin, which are structural neighbors

236

Once optimal superpositions of all pairs of structures have been made, the RMSD
values that are computed as a result can be compared with each other, because the
structures have been moved to the same frame of reference before making the
RMSD calculations.

9.6.1.1 ProFit

Usage: profit reference.pdb mobile.pdb

ProFit, developed by Andrew Martin at the University of Reading, United Kingdom, is
an easy-to-use program for superimposing two protein structures. One protein is
assigned by the user to be the reference structure, and the other protein is mobile
with respect to the reference. ProFit outputs RMSD and can also write out
coordinates for the superimposed proteins. ProFit allows the option of superimposing
only selected regions of each protein so that domains can be examined
independently. ProFit compiles and runs on any Unix workstation. ProFit may be
downloaded from Andrew's web site (http://www.bioinf.org.uk/).

9.6.2 DALI Domain Dictionary
The DALI Domain Dictionary (DDD) at the EBI is based on an automatic classification
of protein domains by sequence identity. Rather than using a human-designed
classification scheme, DDD is constructed by clustering protein neighbors within an
abstract fold space. Instead of working with whole proteins, DDD classifies structures
based on compact, recurring structures (called domains) that may repeat themselves
within, and among, different protein structures. The content of DDD may also be
familiar to you as FSSP, the "Fold classification based on Structure-Structure
alignment of Proteins" database.

DDD can be searched based on text keywords; it can also be viewed as a tree or a
clickable graphical representation of fold space. Views of sequence data for
conserved domains are available through the DDD interface, as well as connections
to structural neighbors.

The superposition program (SUPPOS) that produces the structural alignments in
DALI/FSSP is available within the WHAT IF software package of protein structure
analysis tools, which is discussed in Section 9.7.1.2.

9.6.3 CE and CL
The Combinatorial Extension of the Optimal Path (CE) is a sophisticated automatic
structure alignment algorithm that uses characteristics of local geometry to "seed"
structural alignments and then joins these regions of local similarity into an optimal
path for the full alignment. Dynamic programming can then optimize the alignment.

CE is available either as a web server or as source code from the San Diego
Supercomputer Center. The web server allows you to upload files for pairwise
comparison to each other or to proteins in the PDB, to compare a structure to all
structures in the PDB, to compare a structure to a list of representative chains, and
review alignments for specific protein families. CE also is fully integrated with the
PDB's web site, and CE searches can be initiated directly from the web page

237

generated for any protein you identify in a sequence search. Along with the source
code, you can download a current, precomputed pairwise comparison database
containing all structures in the PDB. If you're doing only a few comparisons,
however, you probably won't even want to do this.

When using the CE server to compute similarities, there are several parameters that
you can set, including cutoffs for percent sequence identity, percent of the alignment
spanned by gaps, and percent length difference between two chains. You can also
set an RMSD cutoff and a Z-score cutoff. The Z-score is a measure of the significance
of an alignment relative to a random alignment, analogous to a BLAST E-value. A Z-
score of 3.5 or above from CE usually indicates that two proteins have a similar fold.

Along with CE, the SDSC offers the Compound Likeness (CL) server, a suite of tools
for probabilistic comparison between protein structures. In CL, you select either an
entire protein structure or a structure fragment to use as a probe for searching the
PDB. Search features include bond length and angle parameters, surface polarity and
accessibility, dihedral angles, secondary structure, shape, and predicted alpha helix
and beta sheet coefficients. CL allows you to ask the question "what else is
chemically similar to this protein (or fragment) that is of interest to me" and to
define chemical similarity very broadly. A full tutorial on CL is available at the CL web
site (http://cl.sdsc.edu/cl1.html/).

9.6.4 VAST
VAST is a pairwise structural alignment tool offered by NCBI. VAST reports slightly
different parameters about structural comparison than CE does, and the underlying
algorithm differs in significant respects. However, the results tend to be quite similar.
VAST searches automatically allow you to view your superimposed protein structures
in the Cn3D browser plug-in, with aligned sequences displayed in Cn3D as well. For
practical purposes, either CE or VAST is sufficient to give you an idea of how two
structures match up; if you are concerned about the algorithmic differences, both
groups provide access to detailed explanations at their sites. Unlike CE, the VAST
software doesn't appear to be available to download, so if you want to perform a
large number of comparisons on your own server, CE may be preferable.

9.7 Structure Analysis
Geometric analysis of protein structures serves two main purposes. It is useful for
verifying the chemical correctness of a protein structure, both as a means of deciding
whether the structural model is ready to be submitted to the PDB and for analyzing
existing structures. Geometric analysis also allows you to examine the internal
contacts within a protein structure. Since protein function often depends on the
interactions of amino acids that aren't adjacent in the protein sequence, contact
analysis can provide insight into complex, nonsequential structural patterns in
proteins.

9.7.1 Analyzing Structure Quality
Geometric analysis can show where a model developed from x-ray crystallography
data or NMR data violates the laws of chemistry. As mentioned earlier, there are
physical laws governing intermolecular interactions: nonbonded atoms can get only

238

so close to each other because as two atoms are forced together beyond the
boundary set by their van der Waals radius, the energetics of the contact become
very unfavorable. These interactions limit not only the contacts between pairs of
atoms in different parts of a protein chain, but also how freely atoms can rotate
around the bonds that connect them. The structure of atomic orbitals and the nature
of bonds between atoms place natural limits on the position of bonded atoms with
respect to each other, so bond angles and dihedral angles are, in practice, restricted
to a limited set of values. Tools for geometric analysis generally have been
developed by crystallographers to show where their structural models violate these
laws of nature; they also can be used by homology modelers or ab-initio structure
modelers to evaluate the quality of a structural model.

There are a variety of tools for analyzing structure quality. Some run as standalones;
others are incorporated into more comprehensive structure analysis and simulation
packages. An exhaustive listing of the best of these tools can be found on the PDB
web site.

9.7.1.1 PROCHECK

PROCHECK http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html) is a
popular software package for checking protein quality. It produces easily interpreted
color PostScript plots describing a protein structure and can also compare two
related protein structures. It runs on Unix systems and also been ported to Windows.

Using PROCHECK requires that you set up several aliases in your .cshrc file. The
aliases you need are:
setenv prodir /usr/local/procheck
alias procheck '$prodir /procheck.scr'
alias procheck_comp '$prodir /procheck_comp.scr'
alias procheck_nmr '$prodir /procheck_nmr.scr'
alias proplot '$prodir /proplot.scr'
alias proplot_comp '$prodir /proplot_comp.scr'
alias proplot_nmr '$prodir /proplot_nmr.scr'
alias aquapro '$prodir /aquapro.scr'
alias gfac2pdb '$prodir /gfac2pdb.scr'
alias viol2pdb '$prodir /viol2pdb.scr'

The aliases are required by the various PROCHECK command scripts, so you can't
just run PROCHECK by typing the full pathnames to each individual module. When
you run PROCHECK or PROCOMP, the program you actually run is a command script
that calls several other programs and scripts.

PROCHECK can be set up to produce several different kinds of output, either in color
or black and white, by editing the procheck.prm file in the directory in which you are
about to issue the procheck command. The parameters are edited by changing Y to
N or vice versa at points in the procheck.prm file where those options are available.
The file is self-documenting and easy to understand. The most important part of the
file, for reference, is probably the portion in which you turn on or off the various
types of plots that are available. The rest of the parameters in procheck.prm are
mainly default color values for different types of plots.

http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html

239

Colour all plots?

Y <- Produce all plots in colour (Y/N)?

Which plots to produce

Y <- 1. Ramachandran plot (Y/N)?
N <- 2. Gly & Pro Ramachandran plots (Y/N)?
N <- 3. Chi1-Chi2 plots (Y/N)?
N <- 4. Main-chain parameters (Y/N)?
N <- 5. Side-chain parameters (Y/N)?
N <- 6. Residue properties (Y/N)?
N <- 7. Main-chain bond length distributions (Y/N)?
N <- 8. Main-chain bond angle distributions (Y/N)?
N <- 9. RMS distances from planarity (Y/N)?
N <- 10. Distorted geometry plots (Y/N)?

Once you've edited the procheck.prm file to your satisfaction, run PROCHECK with
the command procheck filename.pdb [chain] resolution. The resolution parameter
causes your protein to be compared to a "reference protein of X angstrom resolution"
in the PROCHECK output. This parameter isn't optional. The command line for
PROCOMP requires a second protein filename and chain ID instead of the resolution
parameter.

9.7.1.2 WHAT IF/ WHAT CHECK

WHAT IF is a multifunctional menu-driven molecular modeling package developed by
Gert Vriend and now available through the University of Nijmegen. WHAT IF can
calculate just about any property of proteins we discuss in this chapter, from solvent
accessible surface area to pKa values to contacts to molecular dynamics using
GROMOS. The full WHAT IF package is available to academic users for a small fee,
and it is known to compile and run well on Linux systems.

WHAT CHECK provides access to a subset of WHAT IF structural quality checks.
WHAT CHECK reports on stereochemistry, bond lengths, angles, and dihedrals,
among other quantities. Complete WHAT CHECK reports for any protein in the PDB
can be downloaded from the PDBREPORTS database at EMBL. WHAT CHECK also is
available as part of the Biotech Validation Suite web server at EMBL, for use on
models and on structures not already deposited in the PDB.

9.7.2 Intramolecular Interactions
Geometric analysis can also be useful in understanding a protein's fold and function.
In this case, the geometry of interest isn't the chemical bonding interactions between
atoms adjacent to each other in the protein chain, but the nonbonded interactions
between atoms that are widely separated in the protein chain. The density of
intramolecular contacts in the structural core of a domain may be quite different
from the density of contacts in a region between two structural domains. Measuring
this density over the whole protein may give clues as to the process by which a
protein folds. The patterns of hydrogen bonds that hold a protein together may serve
as an identifying signature for a protein fold. And contacts between certain
chemically important residues in a protein may suggest hypotheses about the
protein's catalytic mechanism or function. Protein engineers may want to examine

240

the intramolecular contacts in a protein to determine where changes are least likely
to disrupt the protein's structure.

9.7.2.1 Computing contacts with HBPLUS

Listings of intramolecular nonbonded interactions and hydrogen bonds can be
computed using the standalone program HBPLUS, available from the Biomolecular
Structure group at UCL. Obtaining the HBPLUS program and running it are
straightforward, but because the results are produced as a single long text file, they
require some scripted postprocessing to become useful. The LPC-CSU (Ligand-
Protein Contacts/Contacts of Structural Units) server at the Weizmann Institute
(Rehovot, Israel, http://bioinfo.weizmann.ac.il:8500/oca-bin/lpccsu/) can produce
textual reports of important intra- and intermolecular contacts in any protein. Protein
structures can be uploaded to the server from the user's machine or found on the
server using their PDB ID codes.

Contact mapping and display functionality also can be found within the WHAT IF
package. Two-dimensional contact maps are a standard feature of most molecular
modeling packages. A 2D contact map is simply a plot of pairwise interactions
between residues, where residue number within the protein is plotted on each axis
and a dot (perhaps color-coded to indicate the contact distance) is drawn wherever
residue X and residue Y come into close contact. Contact maps have distinct patterns
that can help identify a protein's fold, and some efforts have even been made to
predict contact maps for proteins of unknown structure based on their sequences and
predicted secondary structure features.

9.8 Solvent Accessibility and Interactions
Solvent-accessible surface calculations help you figure out which chemical groups are
on the surface of a protein. Amino acids on the surface of a protein usually are the
ones that determine how it interacts with other molecules, such as chemical
substrates, ligands, other proteins, and receptors If you know what the chemical
surface of the protein looks like, you can use that information to help determine why
one molecule binds to another, why an enzyme is specific for a particular substrate,
or how the protein influences its environment in other ways.

Analytical shape calculations also help you describe the geometry of the protein
surface. A lot of biochemistry textbooks describe intermolecular interactions in terms
of locks and keys. Molecules fit together in geometrically specific ways, so the shape
of the lock (e.g., the enzyme) has to complement to the shape of the key (the
substrate). The shape of a receptor on the cell surface has to complement to the
ligand it's supposed to respond to, or the cellular response isn't triggered. The
immune system is a good example. In the immune response, the organism produces
antibodies that attack antigens of a particular shape. This is why you can vaccinate
an animal against a disease by injecting a sample of killed virus. The killed virus is
shaped just like the live, deadly virus, but it can't harm the animal. Nonetheless, the
animal develops antibodies that recognize the shape of the killed virus. Then, when
the live virus comes along and tries to invade, the animal already has antibodies that
are the right shape to attack the live virus.

http://bioinfo.weizmann.ac.il:8500/oca-bin/lpccsu/

241

So, for instance, if you want to design a new vaccine or engineer a protein that will
carry out a particular reaction, or understand how two proteins in a metabolic
pathway interact with each other, it's important to be able to measure the shape of
the molecule.

The standard method for computing solvent accessibility is quite simple. Each atom
in the molecular structure is represented by a sphere; there is a different sphere
radius for each distinct atom type. The spheres surround the known atomic centers
and are modeled by a collection of several hundred discrete points. To determine the
solvent-accessible surface of the protein, solvent-accessibility calculators simulate a
spherical "probe" with a radius equivalent to that of water (1.4 angstroms) rolling
over the surface of the atomic spheres. The path of the center of the probe
determines the solvent-accessible surface of the molecule. Because the probe (and
hence, water molecules) can't fit into sharp crevices in the molecular surface, the
computed solvent accessible surface is much smoother than the underlying
molecular surface (Figure 9-14).

Figure 9-14. Determination of solvent accessibility by probe-rolling

Because proteins are dynamic entities rather than the rigid bodies assumed by
solvent-accessibility calculations, it's likely that the interior of the molecule has more
contact with solvent than can be computed using a probe-rolling algorithm. However,
solvent-accessibility calculations can help develop an initial understanding of a
protein molecule that will inform further experimentation. Accessibility calculations
are one way of getting at the complex physicochemical properties of a protein; the
nature of the protein surface affects its interaction with the surrounding media as
well as with other proteins or substrates.

9.8.1 Computing Solvent Accessibility with naccess
Usage: naccess pdb file [-p probe size] [-r vdw file] [-s stdfile] -[hwyc]

There are many programs for calculating solvent accessibility by probe-rolling. They
are all straightforward and easy to use, requiring a standard PDB file as input and
usually giving output in the form of a percentage of accessibility for each amino acid
or atom in the protein. One popular program is naccess, which is available from the
Biomolecular Structure and Modelling group at UCL. naccess can be used in
combination with other programs developed by this group, such as HBPLUS (a

242

program for computing intermolecular interactions and hydrogen bonds) and
LIGPLOT, which we covered earlier. It also runs as a standalone. naccess is written in
FORTRAN, so you'll need the g77 compiler installed on your machine to compile it.

naccess outputs two files, an .asa file with accessible surface areas for each atom in
the molecule and an .rsa file with accessible surface areas and relative accessibilities
for each amino acid. It handles both protein and nucleic acid molecules and produces
reports of accessibilities for individual molecular chains as well as complete
structures. The -h, -w, and -y flags cause the program to ignore hydrogen atoms,
water molecules, or heteroatoms, respectively. Run with the -c option, naccess
produces intermolecular contact areas rather than accessible areas.

SURFNET is a program developed by Roman Laskowski at UCL to manipulate solvent-
accessibility information and display useful representations of surface features,
clefts, cavities, and binding sites. SURFNET generates surface output in formats that
can be displayed in molecular visualization programs, including RasMol.

9.8.2 Solvent Accessibility with Alpha Shapes
The Alpha Shapes software is a mathematically exact alternative to the standard
Connolly surface method of computing solvent accessibility. Developed by the
research group of mathematician Herbert Edelsbrunner at NCSA
(http://www.alphashapes.org/alpha/), the Alpha Shapes software is a general-
purpose program for modeling the surfaces of objects. A set of extensions to the
Alpha Shapes software, specifically for analyzing protein molecules, is also available.

The Alpha Shapes method constructs what is called a simplicial complex or alpha
complex of a structure, based on a rigorous geometrical decomposition of the space
surrounding the collection of points that describes the structure. Once the alpha
complex is constructed for a protein structure, algorithms for inclusion and exclusion
can describe exactly the surface area or volume of the structure as well as cavities,
clefts, and regions of contact. The main benefit of using the Alpha Shapes algorithm
to compute protein shapes is that the software comes with a sophisticated
visualization program called alvis, which can display such geometrical features as the
interior shape of an ion channel or the cavities in the interior of a protein.

Several programs make up the Alpha Shapes distribution. These programs must be
run in the proper sequence to correctly analyze molecular data:

pdb2alf

Translates a PDB file into an alpha datafile.

delcx

Computes the Delaunay complex of the molecule on the output from pdb2alf.

mkalf

Computes the alpha complex from the Delaunay complex computed by delcx.

243

VOLBL

Computes protein properties, using the alpha complex computed by mkalf
and information from the original the PDB file. Depending on which
command-line options are used, VOLBL can compute cavities in the protein
interior and space-filling models of the protein, as well as volumes of
molecules and cavities. Multiple VOLBL runs can produce complimentary data
sets, which can be added or subtracted to determine contact areas and other
molecular properties.

You can find usage details of each of these programs in a README file that
accompanies the Alpha Shapes distribution, or by attempting to run the program
with no arguments on the command line.

Using alvis to visualize your Alpha Shapes data can be quite interesting. To do this,
you need output from delcx and mkalf, but not from VOLBL. To run alvis on a data
set generated from molecule.PDB, where output files molecule.dt and molecule.alf
are also present, enter alvis molecule. The visualizer opens with the convex hull of
the molecule displayed. The standard atomic structure of the molecule can't be seen
from within the current version of alvis, but you can compare your alvis view with
another view of the same molecule (perhaps using RasMol or a similar molecular
visualization program) side by side.

In the bottom left of the alvis control panel, you'll see a box containing a graph with
three colored curves. This graph is called the alpha rank graph, and it can be used to
select a desirable view of the molecule. Positioning your cursor at peaks, valleys, or
intersections on these graphs gives the most interesting views of the molecular
shape.

Using the Pocket Panel, available from the Gizmos pulldown in alvis, you can make
selections that shows voids, pockets, and difference areas in a protein. The online
alvis tutorial at http://www.alphashapes.org describes in full the settings needed to
view these features.

Along with the main Alpha Shapes programs, a number of utility scripts are provided
that can postprocess VOLBL output to give specific information. These include:

aacount

Computes an itemized residue-wise contribution to area or volume from a
VOLBL output file

aadiff

Computes residue-wise differences in accessible area between two models

aanonpolar

Outputs area or volume contributions from nonpolar atoms; aapolar does the
same thing for polar groups

http://www.alphashapes.org

244

areadiff

Computes atom-wise differences in area between two files

Analogous scripts for computing volume differences are also included.

Analytical surface potentials based on Alpha Shapes can also be accessed with the
CAST-P web server at the University of Illinois at Chicago. At the time of this writing,
not all protein structures in the PDB are represented on CAST-P; the site is currently
under development. However, it promises to be a useful analytical tool in the future.
CAST-P features an integrated Java-based visualization of cavities in protein
structures and the amino acids that are in contact with cavities.

9.9 Computing Physicochemical Properties
We've already discussed forces that control the interactions between individual
atoms in a protein molecule. However, to understand intermolecular interactions, it
may be more interesting to learn how all the atoms in a protein act together at a
distance, to influence other proteins or ligands.

The electrostatic potential of an object is a measure of the force exerted by that
object on other nearby objects. The electrostatic potential of a protein molecule is a
long-range force that can influence the behavior of other molecules in the
environment at a range of up to 15 angstroms.

Electrostatic interactions within the macromolecule can also be important. Nearby
charged groups within a protein may cause the pKa value (the pH at which an acidic
or basic group loses or gains a proton) of an amino acid to shift, creating the
chemistry necessary for that molecule to perform its chemical function.

9.9.1 Macromolecular Electrostatics
A protein molecule can be thought of as a collection of charges in a dielectric
medium. In the model that computes electrostatic potentials for protein molecules,
each atom is represented as a point with a partial atomic charge. The solvent
accessible surface of the protein forms the boundary between the interior medium of
the protein and the exterior medium surrounding the protein.

Computing the electrostatic potential of a protein structure allows you to predict
quantities such as individual amino acid pKa values, solvation energies, and
approximations to intermolecular binding energies. If you are interested in protein
modeling, macromolecular electrostatics is a topic that you may wish to explore
further. Our review of the subject in the March 2000 issue of Methods provides an
entry point to the molecular electrostatics literature.

The University of Houston Brownian Dynamics (UHBD) package is a state-of-the-art
software package for computing macromolecular electrostatics. UHBD computes
electrostatic potentials and can also use those potentials as parameters in
subsequent Brownian Dynamics and Molecular Dynamics simulations. The most
recent release of UHBD can be compiled on Linux systems and includes several
control scripts that implement UHBD to calculate pKa values for individual titrating

245

amino acids in the protein, as well as theoretical titration curves for the protein as a
whole. UHBD is accessed by a scripting language; it requires a protein structure file
and a command script as input. It also requires a file containing atomic partial
charges for any amino acids and other atoms in the input structure. Detailed
scripting examples are provided in the UHBD distribution, along with charge datafiles
that allow the program to assign correct partial atomic charges to all but unusual
atom groups.

UHBD, and other similar programs such as DelPhi—which overlaps only the
electrostatics functionality of UHBD—use numerical approximations to solve the
Poisson-Boltzmann equation for the large number of interacting charges that make
up a protein. In the finite-difference approach used by UHBD, the irregularly spaced
charges in a protein molecule are mapped onto a regular 3D grid, and the Poisson-
Boltzmann equation is solved iteratively for each point on the grid until the solution
converges to an electrostatic potential for each point.

9.9.2 Visualization of Molecular Surfaces with Mapped
Properties
Other than alvis, which doesn't truly display a molecular surface but rather a
mathematically derived pseudosurface, there are several options for displaying the
shapes of molecules. Most molecular modeling packages incorporate a molecular
surface display feature and allow the surface to be colored according to chemical
properties. However, the display schemes in programs not specifically designed for
that purpose are too unsophisticated to handle data from macromolecular
electrostatics calculations and other representations of physicochemical properties.
An exception seems to be the SWISS-PDBViewer (discussed earlier), which can
interpret data from external electrostatics calculations and analytical molecular
surface calculations.

9.9.2.1 GRASP/GRASS

GRASP is a high-quality molecular surface visualization program developed by Barry
Honig's group at Columbia University. GRASP can read electrostatic potential files
and display them as features of a molecular surface, and has many other display
options for creating really beautiful visual interpretations of electrostatic properties.
Unfortunately, GRASP is available only for SGI IRIX workstations and there are no
plans to make it available for other operating systems at this time.

If you're using a Mac or PC, some of GRASP's functionality can be accessed through
the GRASS web interface at Columbia. However, this web interface relies heavily on
an interface to either GRASP itself (on SGI workstations), the Chime browser plug-in,
or a VRML viewer, all of which are still problematic or nonexistent if you're working
on a Linux system. We have had some success using the vrmlview viewer with
Netscape to visualize VRML models from the GRASS server, although the image
quality is relatively low. To use vrmlview, download and install the program and then
set your Netscape preferences to use the vrmlview executable to handle files with
MIME type model/vrml. The "Handled By" entry in your Netscape applications list
should read /usr/local/bin/vrmlview %s (or wherever you installed vrmlview).

246

The GRASS interface is straightforward and clickable. You can select from several
molecular display options: CPK surface, molecular surface, ribbons, or a stick model.
Then, a property can be chosen to be mapped onto the molecular graphics. Available
properties include electrostatic potentials computed using GRASP's built-in FDPB
solver, surface curvature, hydrophobicity, and amino acid variability within the
protein's sequence family. GRASS doesn't implement the full functionality of GRASP,
but many of the most useful features are available.

9.10 Structure Optimization
Protein structure optimization is the process of bringing a structure into agreement
with some "ideal" set of geometric parameters. As mentioned earlier when we
discussed structure quality checking, protein structural models sometimes violate the
laws of chemistry. Placing atoms too close together causes unfavorable
intramolecular contacts, or van der Waals bumps. Bond lengths, bond angles, and
dihedral angles between atoms in the protein can also be "wrong"; that is, they can
fall outside some normal range of values expected for that type of bond or angle.

Structure optimization is an important issue not just to developers of theoretical
models, but to researchers who experimentally determine protein structures. All
protein atomic coordinates are, in an important sense, structural models. Structure
optimization tools have long been part of the x-ray crystallographer's toolkit. The
process of optimization can be computationally intensive. Because all atoms in a
protein structure are connected by bonds with rigidly fixed lengths, moving an atom
in one part of the protein structure has wide-ranging effects on its neighbors. Often
moving one part of the protein into a better configuration means moving another
part of the protein into an unfavorable configuration. Optimization is, essentially, an
iterative series of small changes designed to converge to the best overall result.
There are many methods of optimization, which is its own subdiscipline within
theoretical computer science.

You won't always need to know the particulars of optimization methods, but if you
begin using structure optimization and molecular simulation methods frequently, you
should be aware that your choice of optimization algorithms may be an issue. It's not
always certain that optimization will provide you with a better structural model; if the
method is based on incorrect structural rules, or if the rules are prioritized
incorrectly, optimization can actually give you a worse model than you started with.

9.10.1 Informatics Plays a Role in Optimization
What are the "ideal" parameters or constraints used in optimization? In some cases,
they are based entirely on chemical principles: bond lengths and angles determined
by steric restrictions and nonbonded interactions described as Lennard-Jones
potentials. In other cases, structural constraints are based on information derived
from the database of known protein structures. If a particular amino acid in a
particular sequence context always has the same conformation, a higher probability
can be assigned to it assuming that conformation again, rather than a different
conformation. Secondary structure prediction methods use an information-based
approach to predicting likely conformations for the protein backbone. Optimization
methods use information to refine atomic structures at the level of individual
sidechain atoms once the backbone trace has been worked out.

247

9.10.2 Rotamer Libraries
Rotamer libraries are parameter sets specifically for the optimization of sidechain
positions in molecular model building. They are called rotamer libraries because they
contain information about allowed rotations of the remote amino acid sidechain
atoms around the C - C bond, expressed as the allowed values of sidechain
dihedral angles.

Because of steric constraints on bond rotation, amino acid sidechains in proteins can
assume only a few conformations without unfavorable energetic consequences.
Rotamer libraries can be derived using chemical bond and angle constraints, but,
they are more likely to be developed by analysis of the conformations assumed by
amino acid sidechains in known protein structures. Rotamer libraries can be either
backbone-dependent or -independent. Backbone-independent rotamer libraries
classify all instances of a particular amino acid as part of the same set, even if one
occurrence is within a beta sheet and the other is within an alpha helix. Backbone-
dependent rotamer libraries, on the other hand, further classify amino acids
according to their occurrence in specific secondary structures.[2]

[2] When rules for structure evaluation and optimization are derived from existing occurrences
of patterns in a database, there is a trade-off between highly specific classification of
occurrences and the size of the data set for each type of occurrence. The more data in the
data set, the better the value of the rule is likely to be; however, the less specific the
classification of occurrences, the less value the rule is likely to have for prediction. This is true
not only of rotamer libraries but of PDFs and any other database-derived rules.

SCRWL, available from the Fred Cohen research group at UCSF, is a program that
allows you to model sidechain conformations using a backbone-dependent rotamer
library.

9.10.3 PDFs
The derivation of probability density functions (PDFs) is similar in concept to the
development of rotamer libraries, although more mathematically rigorous. The
essence of a PDF is that a mathematical function is developed to represent a
distribution of discrete values. The discrete values that make up the distribution are
harvested from occurrences of a situation in a representative database of samples.
That mathematical function can then be used to evaluate and optimize (and in some
cases even predict) the properties of future occurrences of the same situation.

In protein modeling, PDFs have been used to describe intra- and inter-residue
interatomic distances, as well as bond angles, dihedral angles, and other more
spatially extensive regions of protein structure. Modeller, which is discussed in
Chapter 10, uses a combination of bond angle and dihedral angle PDFs to optimize
the protein structure models it builds. Modeller's internal OPTIMIZE routine can be
used for PDF-based structure optimization.

The data from which PDFs are generated can be broken down into specific
occurrences; for example, all contacts between C in residue i and C in residue
i+4 when both residues are leucine but again, trade-offs between classification detail
and class population occur. Distance PDFs for proteins have been used by several

248

groups to evaluate and optimize protein structures. Most such work is still in its early
stages, and software isn't yet available for public use.

Figure 9-15 shows a plot of a distance probability density function for tertiary
interactions between sulfur atoms in cysteine residues generated from known protein
structures. The function's peak near 2 angstroms corresponds to the high propensity
with which the sulfur atoms form disulfide bridges between cysteine residues. These
data are taken from the Biology Workbench at the San Diego Supercomputer Center
(http://workbench.sdsc.edu/) and plotted using xmgr. Note that the Workbench
PDFs make a distinction between cysteine residues participating in disulfide bridges
(pictured here and referred to as CSS residues at the Workbench site) and those
cysteines that don't participate in disulfide bonds (which the Workbench site calls
CYS).

Figure 9-15. Interatomic distance probability density function

Structure evaluation based on PDFs is implemented in the Structure Tools section of
the SDSC Biology Workbench (Figure 9-16). You can upload a PDB structure or a
theoretical model and score the structure either on a residue-by-residue or an atom-
by-atom basis. Scores can be displayed on a plot, where the Y-axis represents the
relative probability of the region of structure that's being evaluated. This can be
thought of in terms of the probability that a particular residue or atom is in the
"correct" position, given what is known about other occurrences of that residue or
atom in similar sequence environments. Regions with low probability are likely to be
misfolded or poorly modeled. PDF probability scores can also be written out in a
special PDB file, in place of the temperature factor values found in the original PDB
file. These special PDB files can then be displayed using a visualization program such
as RasMol or Chime. Coloring the molecule by temperature factor maps the PDF
probability scores onto the molecular structure, highlighting regions of the structure
that score poorly.

Figure 9-16. Comparing PDF scores for an obsolete PDB structure (1B5C)
and (1CY0) that superseded it

249

9.11 Protein Resource Databases
Several new databases containing information about protein structure and function,
and designed for users of genome-level information, have recently emerged on the
Web. Some of the most notable are GeneCensus, PRESAGE, and BIND. These
databases are still relatively lightly populated, and have not yet taken the central
role in biological research that PDB and NCBI. However, certainly these or similar
resources will soon become vital to molecular biology research.

9.11.1 GeneCensus
The GeneCensus project is a broad, sequence-based comparison of the protein
content of several genomes. At the time of this writing, GeneCensus contains
information from 20 genomes. GeneCensus currently can be searched with a PDB ID
or an ORF ID to locate occurrences of specific protein folds in the GeneCensus
genomes.

9.11.2 PRESAGE
PRESAGE is a database of information about experimental progress with the
structures of various proteins. You can search PRESAGE with a TIGR ORF code, NCBI
or SWISS-PROT accession number, and a number of other codes to find out if
someone is attempting to isolate, crystallize, and solve the structure of that protein,
and if so, how far along they are. PRESAGE is relatively new at press time; it
currently contains only about 6,000 records and isn't guaranteed to be
comprehensive. It can't be searched directly by BLAST or FASTA search with a
sequence, so before checking PRESAGE for instances of an unknown sequence, you
have to search for matching accession codes. However, in principle, the PRESAGE
database promises to be useful, both for crystallographers and their collaborators,

250

and for curious citizens of the molecular biology community who are wondering if the
structure of their protein has been solved yet.

9.11.3 BIND
The Biomolecular Interaction Network Database (BIND) is another relatively new
data repository offered by the Samuel Lunenfeld Research Institute. BIND was
designed to be a central deposition site for known information about macromolecular
interactions. BIND is a complex database, containing information about interactions
between objects in the database, molecular complex information, and metabolic
pathway information. The BIND format is designed to contain information about
experimental conditions that observe the interactions stored in the database, as well
as information about binding site location, biochemical activity, kinetics, and
thermodynamics. BIND is still in its beta testing phase, containing only a few
hundred interactions. However, BIND has been funded to hire indexers and it is
expected to grow rapidly in the near future. One interesting aspect of the BIND data
entry process is that methods for automated reading of existing journal literature are
being implemented to extract known interactions from their inconvenient location in
dusty library stacks and put them more effectively in the public domain.

9.12 Putting It All Together
We can't give you a single recipe for using the techniques described in this chapter to
characterize a protein. There are too many variables from system to system, and too
much diversity in what you as a biologist might want to know. However, some
common features of a structural modeling approach include:

· Gathering useful structural and biophysical information about the system
under study. Everything from site-directed mutagenesis to classic biochemical
and biophysical studies may be useful.

· Using multiple sequence analysis to analyze the protein as part of a related
family. This may give insight into the location of functionally important
residues and active sites.

· Analyzing a crystal structure or theoretical model to identify the location of
buried polar and charged residues, unusual hydrogen bonds, networks of
structured solvent molecules, and other chemical features that may be
involved in structural stability or function.

· Analyzing a family of related proteins by superimposing or comparing their
structures to identify common features.

· Mapping identified properties—sites known to affect function if mutated, sites
conserved in multiple sequences, etc.—onto the protein sequence and
structure.

· Visualizing the structure and interpreting the location of potentially important
amino acids and sites.

· Computing the molecular surface and characterizing possible substrate
binding sites or molecular interaction regions by their shapes.

· Computing electrostatic potentials and modeling electrostatic properties such
as individual amino acid pKa values or molecular interaction energies.
Unusually strong electrostatic potentials or unusual pKa values may indicate
regions of catalytic importance.

251

Obviously, this type of analysis requires a real understanding of protein chemistry.
We've identified the tools of structural biology for you, but you will decide how to put
them to use. To help you toward that end, Table 9-3 contains a quick reference of
molecular structure tools and how they are commonly used.

Table 9-3. Structure Tools and Techniques
What you do Why you do it What you use to do it

View molecular
structure

Computer graphics are the only way
to "see" a protein structure in detail

Browser plugins:
RasMol, Cn3D, SWISS-
PDBViewer;
standalones: MolMol,
MidasPlus, VMD

Create high-quality
PostScript schematic
diagrams and color
graphics of proteins

For publication MolScript

Create schematic
diagrams of active
sites

To help identify the structural
components of the functional site;
for publication

LIGPLOT

Structure classification To identify relationships amongproteins CATH, SCOP

Secondary structure
analysis

To extract recognizable features at
the SS level, which aids in
classification

DSSP, STRIDE

Topology analysis
To extract recognizable
supersecondary motifs, which aids in
classification

TOPS

Domain identification To extract recognizable domains,
which aids in classification 3Dee

Unique structure
database subsets

To eliminate bias in source data sets
for knowledge-based modeling

PDBSelect, culled PDB
databases

Structure alignment
To identify relationships among
distantly related proteins that may
have evolved beyond recognizable
sequence similarity, while preserving
structural similarity

CE, DALI, VAST

Molecular geometry
analysis

To identify strained conformations or
incorrectly represented regions in a
structure model

PROCHECK, WHAT IF

Intramolecular contact
analysis

To identify residue-residue
interactions that may help identify
active sites, structure-stabilizing
features, etc.

CSU, HBPLUS

Solvent accessibility
calculation

To identify amino acids that interact
with a solvent naccess, Alpha Shapes

Solvent modeling
To place a chemically realistic
solvent shell around the molecule in
preparation for some types of
simulations; aids in understanding

HBUILD

252

functional mechanism
Molecular surface
visualization

To gain a visual understanding of
molecular shape and chemical
surface features

GRASP, GRASS server,
SWISS-PDBViewer

Electrostatic potential
calculation

To visualize the chemically important
surface features of a protein, and as
a preliminary step in pKa
calculations, binding energy
calculations, and Brownian dynamics
simulations

UHBD, DelPhi

Protein pKa calculation
To model pH-dependent behavior of
proteins, identify possible active
sites, and and identify residues in
unusual chemical environments

UHBD, DelPhi

Chapter 10. Predicting Protein Structure
and Function from Sequence
The amino acid sequence of a protein contains interesting information in and of itself.
A protein sequence can be compared and contrasted with the sequences of other
proteins to establish its relationship, if any, to known protein families, and to provide
information about the evolution of biochemical function. However, for the purpose of
understanding protein function, the 3D structure of a protein is far more useful than
its sequence.

The key property of proteins that allows them to perform a variety of biochemical
functions is the sequence of amino acids in the protein chain, which somehow
uniquely determines the 3D structure of the protein.[1] Given 20 amino acid
possibilities, there are a vast number of ways they can be combined to make up
even a short protein sequence, which means that given time, organisms can evolve
proteins that carry out practically any imaginable purpose.

[1] That "somehow," incidentally, represents several decades of work by hundreds of
researchers, on a fundamental question that remains open to this day.

Each time a particular protein chain is synthesized in the cell, it folds together so
that each of the critical chemical groups for that particular protein's function is
brought into a precise geometric arrangement. The fold assumed by a protein
sequence doesn't vary. Every occurrence of that particular protein folds into exactly
the same structure.

Despite this consistency on the part of proteins, no one has figured out how to
accurately predict the 3D structure that a protein will fold into based on its sequence
alone. Patterns are clearly present in the amino acid sequences of proteins, but those
patterns are degenerate ; that is, more than one sequence can specify a particular
type of fold. While there are thousands upon thousands of ways amino acids can
combine to form a sequence of a particular length, the number of unique ways that a
protein structure can organize itself seems to be much smaller. Only a few hundred
unique protein folds have been observed in the Protein Data Bank. Proteins with

253

almost completely nonhomologous sequences nonetheless fold into structures that
are similar. And so, prediction of structure from sequence is a difficult problem.

10.1 Determining the Structures of Proteins
If we can experimentally determine the structures of proteins, and structure
prediction is so hard, why bother with predicting structure at all? The answer is that
solving protein structures is difficult, and there are many bottlenecks in the
experimental process. Although the first protein structure was determined decades
before the first DNA sequence, the protein structure database has grown far more
slowly in the interim than the sequence database. There are now on the order of
10,000 protein structures in the PDB, and on the order of 10 million gene sequences
in GenBank. Only about 3,000 unique protein structures have been solved (excluding
structures of proteins that are more than 95% identical in sequence). Approximately
1,000 of these are from proteins that are substantially different from each other (no
more than 25% identical in sequence).

10.1.1 Solving Protein Structures by X-ray Crystallography
In the late 1930s, it was already known that proteins were made up of amino acids,
although it had not yet been proven that these components came together in a
unique sequence. Linus Pauling and Robert Corey began to use x-ray crystallography
to study the atomic structures of amino acids and peptides.

Pure proteins had been crystallized by the time that Pauling and Corey began their
experiments. However, x-ray crystallography requires large, unflawed protein
crystals, and the technology of protein purification and crystallization had not
advanced to the point of producing useful crystals. What Pauling and Corey did
discover in their studies of amino acids and peptides was that the peptide bond is flat
and rigid, and that the carboxylic acid oxygen is almost always on the opposite side
of the peptide bond as the amino hydrogen. (See the illustration of a peptide bond in
Figure 9-1). Using this information to constrain their models, along with the atomic
bond lengths and angles that they observed for amino acids, Pauling and Corey built
structural models of polypeptide chains. As a result, they were able to propose two
types of repetitive structure that occur in proteins: the alpha helix and the beta
sheet, as shown previously in Chapter 9.

In experiments that began in the early 1950s, John Kendrew determined the
structure of a protein called myoglobin, and Max Perutz determined the structure of
a similar protein called hemoglobin. Both proteins are oxygen transporters, easily
isolated in large quantities from blood and readily crystallized. Obtaining x-ray data
of reasonably high quality and analyzing it without the aid of modern computers took
several years. The structures of hemoglobin and myoglobin were found to be
composed of high-density rods of the dimensions expected for Pauling's proposed
alpha helix. Two years later, a much higher-quality crystallographic data set allowed
the positions of 1200 of myoglobin's 1260 atoms to be determined exactly. The
experiments of Kendrew and Perutz paved the way for x-ray crystallographic analysis
of other proteins.

In x-ray crystallography, a crystal of a substance is placed in an x-ray beam. X-rays
are reflected by the electron clouds surrounding the atoms in the crystal. In a protein

254

crystal, individual protein molecules are arranged in a regular lattice, so x-rays are
reflected by the crystal in regular patterns. The x-ray reflections scattered from a
protein crystal can be analyzed to produce an electron density map of the protein
(see Figure 10-1: images are courtesy of the Holden Group, University of Wisconsin,
Madison, and Bruker Analytical X Ray Systems). Protein atomic coordinates are
produced by modeling the best possible way for the atoms making up the known
sequence of the protein to fit into this electron density. The fitting process isn't
unambiguous; there are many incrementally different ways in which an atomic
structure can be fit into an electron density map, and not all of them are chemically
correct. A protein structure isn't an exact representation of the positions of atoms in
the crystal; it's simply the model that best fits both the electron density map of the
protein and the stereochemical constraints that govern protein structures.

Figure 10-1. X-ray diffraction pattern and corresponding electron density
map of the 3D structure of zinc-containing phosphodiesterase

255

In order to determine a protein structure by x-ray crystallography, an extremely
pure protein sample is needed. The protein sample has to form crystals that are
relatively large (about 0.5 mm) and singular, without flaws. Producing large samples
of pure protein has become easier with recombinant DNA technology. However,
crystallizing proteins is still somewhat of an art form. There is no generic recipe for
crystallization conditions (e.g., the salt content and pH of the protein solution) that
cause proteins to crystallize rapidly, and even when the right solution conditions are
found, it may take months for crystals of suitable size to form.

Many protein structures aren't amenable to crystallization at all. For instance,
proteins that do their work in the cell membrane usually aren't soluble in water and
tend to aggregate in solution, so it's difficult to solve the structures of membrane
proteins by x-ray crystallography. Integral membrane proteins account for about

256

30% of the protein complement (proteome) of living things, and yet less than a
dozen proteins of this type have been crystallized in a pure enough form for their
structures to be solved at atomic resolution.

10.1.2 Solving Structures by NMR Spectroscopy
An increasing number of protein structures are being solved by nuclear magnetic
resonance (NMR) spectroscopy. Figure 10-2 shows raw data from NMR spectroscopy.
NMR detects atomic nuclei with nonzero spin; the signals produced by these nuclei
are shifted in the magnetic field depending on their electronic environment. By
interpreting the chemical shifts observed in the NMR spectrum of a molecule,
distances between particular atoms in the molecule can be estimated. (The image in
Figure 10-2 is courtesy of Clemens Anklin, Bruker Analytical X Ray Systems.)

Figure 10-2. NOESY (2D NMR) spectrum of lysozyme

To be studied using NMR, a protein needs to be small enough to rotate rapidly in
solution (on the order of 30 kilodaltons in molecular weight), soluble at high
concentrations, and stable at room temperature for time periods as long as several
days.

Analysis of the chemical shift data from an NMR experiment produces a set of
distance constraints between labeled atoms in a protein. Solving an NMR structure
means producing a model or set of models that manage to satisfy all the known
distance constraints determined by the NMR experiment, as well as the general
stereochemical constraints that govern protein structures. NMR models are often
released in groups of 20 -40 models, because the solution to a structure determined
by NMR is more ambiguous than the solution to a structure determined by
crystallography. An NMR average structure is created by averaging such a group of

257

models (Figure 10-3). Depending on how this averaging is done, stereochemical
errors may be introduced into the resulting structure, so it's generally wise to check
the quality of average structures before using them in modeling.

Figure 10-3. Structural diversity in a set of NMR models

10.2 Predicting the Structures of Proteins
Ideally, what we'd like to do in analyzing proteins is take the sequence of a protein,
which is cheap to obtain experimentally, and predict the structure of the protein,
which is expensive and sometimes impossible to determine experimentally. It would
also be interesting to be able to accurately predict function from sequence, identify
functional sites in uncharacterized 3D structures, and eventually, build designed
proteins—molecular machines that do whatever we need them to do. But without an
understanding of how sequence determines structure, these other goals can't reliably
be achieved.

There are two approaches in computational modeling of protein structure. The first is
knowledge-based modeling. Knowledge-based methods employ parameters
extracted from the database of existing structures to evaluate and optimize
structures or predict structure from sequence (the protein structure prediction
problem). The second approach is based on simulation of physical forces and
molecular dynamics. Physicochemical simulations are often used to attempt to model
how a protein folds into its compact, functional, native form from a nonfunctional,
not-as-compact, denatured form (the protein folding problem). In this chapter we
focus on knowledge-based protein structure prediction and analysis methods in
which bioinformatics plays an important role.

Ab-initio protein structure prediction from protein sequence remains an unsolved
problem in computational biology. Although many researchers have worked to
develop methods for structure prediction, the only methods that produce a large
number of successful 3D structure predictions are those based on sequence
homology. If you have a protein sequence and you want to know its structure, you
either need a homologous structure to use as a template for model-building, or you
need to find a crystallographer who will collaborate with you to solve the structure
experimentally.

258

The protein-structure community is addressing the database gap between sequence
and structure in a couple of ways. Pilot projects in structural genomics—the effort to
experimentally solve all, or some large fraction of, the protein structures encoded by
an entire genome—are underway at several institutions. However, these projects
stand little chance of catching up to the sheer volume of sequence data that's being
produced, at least in the near future.

10.2.1 CASP: The Search for the Holy Grail
In light of the database gap, computational structure prediction is a hot target. It's
often been referred to as the "holy grail" of computational biology; it's both an
important goal and an elusive, perhaps impossible, goal. However, it's possible to
track progress in the area of protein structure prediction in the literature and try out
approaches that have shown partial success.

Every two years, structure prediction research groups compete in the Community
Wide Experiment on the Critical Assessment of Techniques for Protein Structure
Prediction (CASP, http://predictioncenter.llnl.gov/). The results of the CASP
competition showcase the latest methods for protein-structure prediction. CASP has
three areas of competition: homology modeling, threading, and ab initio prediction.
In addition, CASP is a testing ground for new methods of evaluating the correctness
of structure predictions.

Homology modeling focuses on the use of a structural template derived from known
structures to build an all-atom model of a protein. The quality of CASP predictions in
1998 showed that structure prediction based on homology is very successful in
producing reasonable models in any case in which a significantly homologous
structure was available. The challenge for homology-based prediction, as for
sequence alignment, is detecting meaningful sequence homology in the Twilight
Zone—below 25% sequence homology.

Threading methods take the amino acid sequence of an uncharacterized protein
structure, rapidly compute models based on existing 3D structures, and then
evaluate these models to determine how well the unknown amino acid "fits" each
template structure. All the threading methods reported in the most recent CASP
competition produce accurate structural models in less than half of the cases in
which they are applied. They are more successfully used to detect remote
homologies that can't be detected by standard sequence alignment; if parts of a
sequence fit a fold well, an alignment can generally be inferred, although there may
not be enough information to build a complete model.

Ab-initio prediction methods focus on building structure with no prior information.
While none of the ab-initio methods evaluated in CASP 3 produce accurate models
with any reliability, a variety of methods are showing some promise in this area. One
informatics-based strategy for structure prediction has been to develop
representative libraries of short structural segments out of which structures can be
built. Since structural "words" that aren't in the library of segments are out of
bounds, the structural space to be searched in model building is somewhat
constrained. Another common ab-initio method is to use a reduced representation of
the protein structure to simulate folding. In these methods, proteins can be
represented as beads on a string. Each amino acid, or each fixed secondary structure
unit in some approaches, becomes a bead with assigned properties that attract and

http://predictioncenter.llnl.gov/

259

repel other types of beads, and statistical mechanical simulation methods are used to
search the conformational space available to the simplified model. These methods
can be successful in identifying protein folds, even when the details of the structure
can't be predicted.

10.3 From 3D to 1D
Proteins and DNA are, in reality, complicated chemical structures made up of
thousands or even millions of atoms. Simulating such complicated structures
explicitly isn't possible even with modern computers, so computational biologists use
abstractions of proteins and DNA when developing analytical methods. The most
commonly used abstraction of biological macromolecules is the single-letter
sequence. However, reducing the information content of a complicated structure to a
simple sequence code leaves behind valuable information.

The sequence analysis methods discussed in Chapter 7 and Chapter 8, treat proteins
as strings of characters. For the purpose of sequence comparison, the character
sequence of a protein is almost a sufficient representation of a protein structure.
However, even the need for substitution matrices in scoring protein sequence
alignments points to the more complicated chemical nature of proteins. Some amino
acids are chemically similar to each other and likely to substitute for each other.
Some are different. Some are large, and some are small. Some are polar; some are
nonpolar. Substitution matrices are a simple, quantitative way to map amino acid
property information onto a linear sequence. Asking no questions about the nature of
the similarities, substitution matrices reflect the tendencies of one amino acid to
substitute for another, but that is all.

However, each amino acid residue in a protein structure (or each base in a DNA or
RNA structure, as we are beginning to learn) doesn't exist just within its sequence
context. 1D information has not proven sufficient to show unambiguously how
protein structure and function are determined from sequence. The 3D structural and
chemical context of a residue contains many types of information.

Until quite recently, 3D information about protein structure was usually condensed
into a more easily analyzable form via 3D-to-1D mapping. A property extracted from
a database can be mapped, usually in the form of a numerical or alphabetic
character score, to each residue in a sequence. Knowledge-based methods for
secondary structure prediction were one of the first uses of 3D-to-1D mapping. By
mapping secondary structure context onto sequence information as a property—
attaching a code representing "helix," "sheet," or "coil" to each amino acid—a set of
secondary structure propensities can be derived from the structure database and
then used to predict the secondary structure content of new sequences.

What important properties does each amino acid in a protein sequence have, besides
occurrence in a secondary structure? Some commonly used properties are solvent
accessibility, acid/base properties, polarizability, nearest sequence neighbors, and
nearest spatial neighbors. All these properties have something to do with
intermolecular interactions, as discussed in Chapter 9.

10.4 Feature Detection in Protein Sequences

260

Protein sequence analysis is based to some extent on understanding the
physicochemical properties of the chemical components of the protein chain, and to
some extent on knowing the frequency of occurrence of particular amino acids in
specific positions in protein structures and substructures. Although protein sequence-
analysis tools operate on 1D sequence data, they contain implicit assumptions about
how structural features map to sequence data. Before using these tools, it's best to
know some protein biochemistry.

Features in protein sequences represent the details of the protein's function. These
usually include sites of post-translational modifications and localization signals. Post-
translational modifications are chemical changes made to the protein after it's
transcribed from a messenger RNA. They include truncations of the protein
(cleavages) and the addition of a chemical group to regulate the behavior of the
protein (phosphorylation, glycosylation, and acetylation are common examples).
Localization or targeting signals are used by the cell to ensure that proteins are in
the right place at the right time. They include nuclear localization signals, ER
targeting peptides, and transmembrane helices (which we saw in Chapter 9).

Protein sequence feature detection is often the first problem in computational biology
tackled by molecular biologists. Unfortunately, the software tools used for feature
detection aren't centrally located. They are scattered across the Web on personal or
laboratory sites, and to find them you'll need to do some digging using your favorite
search engine.

One collection of web-based resources for protein sequence feature detection is
maintained at the Technical University of Denmark's Center for Biological Sequence
Analysis Prediction Servers (http://www.cbs.dtu.dk/services/). This site provides
access to server-based programs for finding (among other things) cleavage sites,
glycosylation sites, and subcellular localization signals. These tools all work similarly;
they search for simple sequence patterns, or profiles, that are known to be
associated with various post-translational modifications. The programs have
standardized interfaces and are straightforward to use: each has a submission form
into which you paste your sequence of interest, and each returns an HTML page
containing the results.

10.5 Secondary Structure Prediction
Secondary structure prediction is often regarded as a first step in predicting the
structure of a protein. As with any prediction method, a healthy amount of
skepticism should be employed in interpreting the output of these programs as
actual predictions of secondary structure. By the same token, secondary structure
predictions can help you analyze and compare protein sequences. In this section, we
briefly survey secondary structure prediction methods, the ways in which they are
measured, and some applications.

Protein secondary structure prediction is the classification of amino acids in a protein
sequence according to their predicted local structure. Secondary structure is usually
divided into one of three types (alpha helix, beta sheet, or coil), although the
number of states depends on the model being used.

261

Secondary structure prediction methods can be divided into alignment-based and
single sequence-based methods. Alignment-based secondary structure prediction is
quite intuitive and related to the concept of sequence profiles. In an alignment-based
secondary structure prediction, the investigator finds a family of sequences that are
similar to the unknown. The homologous regions in the family of sequences are then
assumed to share the same secondary structure and the prediction is made not
based on one sequence but on the consensus of all the sequences in the set. Single
sequence-based approaches, on the other hand, predict local structure for only one
unknown.

10.5.1 Alignment-Based and Hybrid Methods
Modern methods for secondary structure prediction exploit information from multiple
sequence alignments, or combinations of predictions from multiple methods, or both.
These methods claim accuracy in the 70 -77% range. Many of these programs are
available for use over the Web. They take a sequence (usually in FASTA format) as
input, execute some procedure on them, then return a prediction, usually by email,
since the prediction algorithms are compute-intensive and tend to be run in a queue.
The following is a list of six of the most commonly used methods:

PHD

PHD combines results from a number of neural networks, each of which
predicts the secondary structure of a residue based on the local sequence
context and on global sequence characteristics (protein length, amino acid
frequencies, etc.) The final prediction, then, is an arithmetic average of the
output of each of these neural networks. Such combination schemes are
known as jury decision or (more colloquially) winner-take-all methods. PHD is
regarded as a standard for secondary structure prediction.

PSIPRED

PSIPRED combines neural network predictions with a multiple sequence
alignment derived from a PSI-BLAST database search. PSIPRED was one of
the top performers on secondary structure prediction at CASP 3.

JPred

JPred secondary structure predictions are taken from a consensus of several
other complementary prediction methods, supplemented by multiple
sequence alignment information. JPred is another one of the top-performing
secondary structure predictors. The JPred server returns output that can in
turn be displayed, edited, and saved for use by other programs using the
Jalview alignment editor.

PREDATOR

PREDATOR combines multiple sequence alignment information with the
hydrogen bonding characteristics of the amino acids to predict secondary
structure.

262

PSA

PSA is another Markov model-based approach to secondary structure
prediction. It's notable for its detailed graphical output, which represents
predicted probabilities of helix, sheet, and coil states for each position in the
protein sequence.

10.5.2 Single Sequence Prediction Methods
The first structure prediction methods in the 1970s were single sequence
approaches. The Chou-Fasman method uses rules derived from physicochemical data
about amino acids to predict secondary structure. The GOR algorithm (named for its
authors, Garnier, Osguthorpe, and Robson) and its successors use information about
the frequency with which residues occur in helices, sheets, and coils in proteins of
known structure to predict structures. Both methods are still in use, often on
multiple-tool servers such as the SDSC Biology Workbench. Modern methods based
on structural rules and frequencies can achieve prediction accuracies in the 70 -75%
range, especially when families of related sequences are analyzed, rather than single
sequences.

The surge in popularity of artificial intelligence methods in the 1980s gave rise to AI-
based approaches to secondary structure prediction, most notably the pattern-
recognition approaches developed in the laboratories of Fred Cohen (University of
California, San Francisco) and Michael Sternberg (Imperial Cancer Research Fund),
and the neural network applications of Terrence Sejnowski and N. Qian (then at
Johns Hopkins). These methods exploited similar information as the earlier single-
sequence methods did, using the AI techniques to automate knowledge acquisition
and application.

10.5.3 Measuring Prediction Accuracy
Authors who present papers on secondary structure prediction methods often use a
measure of prediction accuracy called Q3. The Q3 score is defined as:

Q = true_positives + true_negatives / total_residues

A second measure of prediction accuracy is the segment overlap score (Sov)
proposed by Burkhard Rost and coworkers. The Sov metric tends to be more
stringent than Q3, since it gives high scores to non-overlapping segments of a single
kind of secondary structure, and penalizes sparse predictions (Figure 10-4).

Figure 10-4. Good and bad (sparse) secondary structure predictions

263

When comparing methods, it pays to be conservative; look at both the average
scores and their standard deviations instead of the best reported score. As you can
see, Q3 and Sov are fairly simple statistics. Unlike E-values reported in sequence
comparison, neither is a test statistic; both measure the percent of residues
predicted correctly instead of measuring the significance of prediction accuracy. And,
as with genefinders, make sure you know what kind of data is used to train the
prediction method.

10.5.4 Putting Predictions to Use
Originally, the goal of predicting secondary structure was to come up with the most
accurate prediction possible. Many researchers took this as their goal, resulting in
many gnawed fingernails and pulled-out hairs. As mentioned earlier, the hard-won
lesson of secondary structure prediction is that it isn't very accurate. However,
secondary structure prediction methods have practical applications in bioinformatics,
particularly in detecting remote homologs. Drug companies compare secondary
structure predictions to locate potential remote homologs in searches for drug
targets. Patterns of predicted secondary structure can predict fold classes of proteins
and select targets in structural genomics.

Secondary structure prediction tools such as PredictProtein and JPred combine the
results of several approaches, including secondary structure prediction and threading
methods. Using secondary structure predictions from several complementary
methods (both single-sequence and homology-based approaches) can result in a
better answer than using just one method. If all the methods agree on the predicted
structure of a region, you can be more confident of the prediction than if it had been
arrived at by only one or two programs. This is known as a voting procedure in
machine learning.

As with any other prediction, secondary structure predictions are most useful if some
information about the secondary structure is known. For example, if the structure of
even a short segment of the protein has been determined, that data can be used as
a sanity check for the prediction.

10.5.5 Predicting Transmembrane Helices
Transmembrane helix prediction is related to secondary structure prediction. It
involves the recognition of regions in protein sequences that can be inserted into cell
membranes. Methods for predicting transmembrane helices in protein sequences
identify regions in the sequence that can fold into a helix and exist in the
hydrophobic environment of the membrane. Transmembrane helix prediction grew
out of research into hydrophobicity in the early 1980s, pioneered by Russell Doolittle
(University of California, San Diego). Again, there are a number of transmembrane
helix prediction servers available over the Web. Programs that have emerged as
standards for transmembrane helix prediction include TMHMM
(http://www.cbs.dtu.dk/services/TMHMM-1.0/), MEMSAT
(http://insulin.brunel.ac.uk/~jones/memsat.html), and TopPred
(http://www.sbc.su.se/~erikw/toppred2/).

Although structure determination for soluble proteins can be difficult, a far greater
challenge is structure determination for membrane-bound proteins. Some of the

264

most interesting biological processes involve membrane proteins—for example,
photosynthesis, vision, neuron excitation, respiration, immune response, and the
passing of signals from one cell to another. Yet only a handful of membrane proteins
have been crystallized. Because these proteins don't exist entirely in aqueous
solution, their physicochemical properties are very different from those of soluble
proteins and they require unusual conditions to crystallize—if they are amenable to
crystallization at all.

As a result, many computer programs exist that detect transmembrane segments in
protein sequence. These segments have distinct characteristics that make it possible
to detect them with reasonable certainty. In order to span a cell membrane, an alpha
helix must be about 17-25 amino acids in length. Because the interior of a cell
membrane is composed of the long hydrocarbon chains of fatty acids, an alpha helix
embedded in the membrane must present a relatively nonpolar surface to the
membrane in order for its position to be energetically favorable.

Early transmembrane segment identification programs exploited these problems
directly. By analyzing every 17-25 residue windows of an amino acid sequence and
assigning a hydrophobicity score to each window, high-scoring segments can be
predicted to be transmembrane helices. Recent improvements to these early
methods have boosted prediction of individual transmembrane segments to an
accuracy level of 90 -95%.

The topology of the protein in the membrane isn't as easy to predict. The orientation
of the first helix in the membrane determines the orientation of all the remaining
helices. The connections of the helices can be categorized as falling on one side or
the other of the membrane, but determining which side is which, physiologically, is
more complicated.

10.5.6 Threading
The basic principle of structure analysis by threadingis that an unknown amino acid
sequence is fitted into (threaded through) a variety of existing 3D structures, and
the fitness of the sequence to fold into that structure is evaluated. All threading
methods operate on this premise, but they differ in their details.

Threading methods don't build a refined all-atom model of the protein; rather, they
rapidly substitute amino acid positions in a known structure with the sidechains from
the unknown sequence. Each sidechain position in a folded protein can be described
in terms of its environment: to what extent the sidechain is exposed to solvent and,
if it isn't exposed to solvent, what other amino acids it's in contact with. A threaded
model is scored highly if hydrophobic residues are found in solvent-inaccessible
environments and hydrophilic residues on the protein surface. But these high scores
are possible only if buried charged and polar residues are found to have appropriate
countercharges or hydrogen bonding partners, etc.

Threading is most profitably used for fold recognition, rather than for model building.
For this purpose, the UCLA-DOE Structure Prediction Server (http://www.doe-
mbi.ucla.edu/people/frsur/frsur.html) is by far the easiest tool to use. It allows you
to submit a single sequence and try out multiple fold-recognition and evaluation
methods, including the DOE lab's own Gon prediction method as well as EMBL's
TOPITS method and NIH's 123D+ method. Other features, including BLAST and

265

FASTA searches, PROSITE searches, and Bowie profiles, which evaluate the fitness of
a sequence for its apparent structure, are also available.

Another threading server, the 3D-PSSM server offered by the Biomolecular Modelling
Laboratory of the Imperial Cancer Research Fund, provides a fold prediction based
on a profile of the unknown sequence family. 3D-PSSM incorporates multiple analysis
steps into a simple interface. First the unknown protein sequence is compared to a
nonredundant protein sequence database using PSI-BLAST, and a position-specific
scoring matrix (PSSM) for the protein is generated. The query PSSM is compared to
all the sequences in the library database; the query sequence is also compared to
1D-PSSMs (PSSMs based on standard multiple sequence alignments) and 3D-PSSMs
(PSSMs based on structural alignments) of all the protein families in the library
database. Secondary structure predictions based on these comparisons are shown,
aligned to known secondary structures of possible structural matches for the query
protein. The results from the 3D-PSSM search are presented in an easy-to-
understand graphical format, but they can also be downloaded, along with carbon-
alpha-only models of the unknown sequence built using each possible structural
match as a template.

Most threading methods are considered experimental, and new methods are always
under development. More than one method can be used to help identify any
unknown sequence, and the results interpreted as a consensus of multiple experts.
The main thing to remember about any structural model you build using a threading
server is that it's likely to lack atomic detail, and it's also likely to be based on a
slightly or grossly incorrect alignment. The threading approach is designed to assess
sequences as likely candidates to fit into particular folds, not to build usable models.
Putative structural alignments generated using threading servers can serve as a
basis for homology modeling, but they should be carefully examined and edited prior
to building an all-atom model.

10.6 Predicting 3D Structure
As was stated earlier in the chapter, predicting protein structure from sequence is a
difficult task, and there is no method yet that satisfies all parameters. There are,
however, a number of tools that can predict 3D structure. They fall into two
subgroups: homology modeling and ab-initio prediction.

10.6.1 Homology Modeling
Let's say you align a protein sequence (a "target" sequence) against the sequence of
another protein with a known structure. If the target sequence has a high level of
similarity to the sequence with known structure (over the full length of the
sequence), you can use that known structure as a template for the target protein
with a reasonable degree of confidence.

There is a standard process that is used in homology modeling. While the programs
that carry out each step may be different, the process is consistent:

1. Use the unknown sequence as a query to search for known protein structures.
2. Produce the best possible global alignment of the unknown sequence and the
template sequence(s).

266

3. Build a model of the protein backbone, taking the backbone of the template
structure as a model.

4. In regions in which there are gaps in either the target or the template, use a
loop-modeling procedure to substitute segments of appropriate length.

5. Add sidechains to the model backbone.
6. Optimize positions of sidechains.
7. Optimize structure with energy minimization or knowledge-based
optimization.

The key to a successful homology-modeling project isn't usually the software or
server used to produce the 3D model. Your skill in designing a good alignment to a
template structure is far more critical. A combination of standard sequence
alignment methods, profile methods, and structural alignment techniques may be
employed to produce this alignment, as we discuss in the example at the end of this
chapter. Once a good alignment exists, there are several programs that can use the
information in that alignment to produce a structural model.

10.6.1.1 Modeller

Modeller (http://guitar.rockefeller.edu/modeller/modeller.html) is a program for
homology modeling. It's available free to academics as a standalone program or as
part of MSI's Quanta package (http://www.msi.com).

Modeller has no graphical interface of its own, but once you are comfortable in the
command-line environment, it's not all that difficult to use. Modeller executables can
be downloaded from the web site at Rockefeller University, and installation is
straightforward; follow the directions in the README file available with the
distribution. There are several different executables available for each operating
system; you should choose based on the size of the modeling problems you will use
them for. The README file contains information on the array size limits of the various
executables. There are limits on total number of atoms, total number of residues,
and total number of sequences in the input alignment.

As input to Modeller, you'll need two input files, an alignment file, and a Modeller
script. The alignment file format is described in detail in the Modeller manpages; the
Modeller script for a simple alignment consists of just a few lines written in the TOP
language (Modeller's internal language). Modeller can calculate multiple models for
any input. If the ENDING_ MODEL value in the example script shown is set to a
number other than one, more models are generated. Usually, it's preferable to
generate more than one model, evaluate each model independently, and choose the
best result as your final model.

The example provided in the Modeller documentation shows the setup for an
alignment with a pregenerated alignment file between one known protein and one
unknown sequence:
INCLUDE # Include the predefined TOP routines
SET ALNFILE = 'alignment.ali' # alignment filename
SET KNOWNS = '5fd1' # codes of the templates
SET SEQUENCE = '1fdx' # code of the target
SET ATOMS_FILES_DIRECTORY = './:../atom_files'# directories for input
atom files

267

SET STARTING_MODEL= 1 # index of the first model
SET ENDING_MODEL = 1 # index of the last model

(determines how many models to
calculate)
CALL ROUTINE = 'model' # do homology modeling

Modeller is run by giving the command mod scriptname. If you name your script
fdx.top, the command is mod fdx.

Modeller is multifunctional and has built-in commands that will help you prepare your
input:

SEQUENCE_SEARCH

Searches for similar sequences in a database of fold class representative
structures

MALIGN3D

Aligns two or more structures

ALIGN

Aligns two blocks of sequences

CHECK_ ALIGNMENT

Evaluates an alignment to be used for modeling

COMPARE_SEQUENCES

Scores sequences in an alignment based on pairwise similarity

SUPERPOSE

Superimposes one model on another or on the template structure

ENERGY

Generates a report of restraint violations in a modeled structure

Each command needs to be submitted to Modeller via a script that calls that
command, as shown in the previous sample script. Dozens of other Modeller
commands and full details of writing scripts are described in the Modeller manual.

One caveat in automated homology modeling is that sidechain atoms may not be
correctly located in the resulting model; automatic model building methods focus on
building a reasonable model of the structural backbone of the protein because
homology provides that information with reasonable confidence. Homology doesn't
provide information about sidechain orientation, so the main task of the automatic

268

model builder is to avoid steric conflicts and improbable conformations rather than
optimize sidechain orientations. Incorrect sidechain positions may be misleading if
the goal of the model building is to explore functional mechanisms.

10.6.1.2 How Modeller builds a model

Though Modeller incorporates tools for sequence alignment and even database
searching, the starting point for Modeller is a multiple sequence alignment between
the target sequence and the template protein sequence(s). Modeller uses the
template structures to generate a set of spatial restraints, which are applied to the
target sequence. The restraints limit, for example, the distance between two
residues in the model that's being built, based on the distance between the two
homologous residues in the template structure. Restraints can also be applied to
bond angles, dihedral angles, and pairs of dihedrals. By applying enough of these
spatial restraints, Modeller effectively limits the number of conformations the model
can assume.

The exact form of the restraints are based on a statistical analysis of differences
between pairs of homologous structures. What those statistics contribute is a
quantitative description of how much various properties are likely to vary among
homologous structures. The amount of allowed variation between, for instance,
equivalent alpha-carbon-to-alpha-carbon distances is expressed as a PDF, or
probability density function.

What the use of PDF-based restraints allows you to do, in homology modeling, is to
build a structure that isn't exactly like the template structure. Instead, the structure
of the model is allowed to deviate from the template but only in a way consistent
with differences found between homologous proteins of known structure. For
instance, if a particular dihedral angle in your template structure has a value of -60º,
the PDF-based restraint you apply should allow that dihedral angle to assume a value
of 60 plus or minus some value. That value is determined by what is observed in
known pairs of homologous structures, and it's assigned probabilistically, according
to the form of the probability density function.

Homology-based spatial restraints aren't the only restraints applied to the model. A
force field controlling proper stereochemistry is also applied, so that the model
structure can't violate the rules of chemistry to satisfy the spatial restraints derived
from the template structures. All chemical restraints and spatial restraints applied to
the model are combined in a function (called an objective function) that's optimized
in the course of the model building process.

10.6.1.3 ModBase: a database of automatically generated models

The developers of Modeller have made available a queryable online database of
annotated homology models. The models are prepared using an automated
prediction pipeline. The first step in the pipeline is to compare each unknown protein
sequence with a database of existing protein structures. Proteins that have
significant sequence homology to domains of known structures are then modeled
using those structures as templates. Unknown sequences are aligned to known
structures using the ALIGN2D command in Modeller, and 3D structures are built
using the Modeller program. The final step in the pipeline is to evaluate the models;
results of the evaluation step are presented to the ModBase user as part of the

269

search results. Since this is all standard procedure for homology-model development
that's managed by a group of expert homology modelers, checking ModBase before
you set off to build a homology model on your own is highly recommended.

The general procedure for building a model with Modeller is to identify homologies
between the unknown sequence and proteins of known structures, build a multiple
alignment of known structures for use as a template, and apply the Modeller
algorithm to the unknown sequence. Models can subsequently be evaluated using
standard structure-evaluation methods.

10.6.1.4 The SWISS-MODEL server

SWISS-MODEL is an automated homology modeling web server based at the Swiss
Institute of Bioinformatics. SWISS-MODEL allows you to submit a sequence and get
back a structure automatically. The automated procedure that's used by SWISS-
MODEL mimics the standard steps in a homology modeling project:

1. Uses BLAST to search the protein structure database for sequences of known
structure

2. Selects templates and looks for domains that can be modeled based on non-
homologous templates

3. Uses a model-building program to generate a model
4. Uses a molecular mechanics force field to optimize the model

You must supply an unknown sequence to initiate a SWISS-MODEL run in their First
Approach mode; however, you can also select the template chains that are used in
the model building process. This information is entered via a simple web form. You
can have the results sent to you as a plain PDB file, or as a project file that can be
opened using the SWISS-PDBViewer, a companion tool for the SWISS-MODEL server
you can download and install on your own machine.

Although that sounds simple, such an automatic procedure is error-prone. In a
nonautomated molecular modeling project, there is plenty of room for user
intervention. SWISS-MODEL actually allows you to intervene in the process using
their Project Mode. In Project Mode, you can use the SWISS-PDBViewer to align your
template and target sequences manually, then write out a project file, and upload it
to the SWISS-MODEL server.

10.6.2 Tools for Ab-Initio Prediction
Since ab-initio structure prediction from sequence has not been done with any great
degree of success so far, we can't recommend software for doing this routinely. If
you are interested in the ab-initio structure-prediction problem and want to
familiarize yourself with current research in the field, we suggest you start with any
of these tools: the software package RAMP developed by Ram Samudrala, the I-
Sites/ ROSETTA prediction server developed by David Baker and Chris Bystroff, and
the ongoing work of John Moult. Recent journal articles describing these methods
can serve as adequate entry points into the ab-initio protein structure prediction
literature.

10.7 Putting It All Together: A Protein Modeling Project

270

So how do all of these tools work to produce a protein structure model from
sequence? We haven't described every single point and click in this chapter, because
most of the software is web-based and quite self-explanatory in that respect.
However, you may still be wondering how you'd put it all together to manage a
tough modeling project.

As an example, we built a model of a target sequence from CASP 4, the most recent
CASP competition. We've deliberately chosen a difficult sequence to model. There are
no unambiguously homologous structures in the PDB, though there are clues that
can be brought together to align the target with a possible template and build a
model. We make no claims that the model is correct; its purpose is to illustrate the
kind of process you might go through to build a partial 3D model of a protein based
on a distant similarity.

The process for building an initial homology model when you do have an obvious,
strong homology to a known structure is much more straightforward: simply align
the template and target along their full length, edit the alignment if necessary, write
it out in a format that Modeller can read, and submit; or submit the sequence of your
unknown to SWISS-MODEL in First Approach mode.

10.7.1 Finding Homologous Structures
The first step in any protein modeling project is to find a template structure (if
possible) to base a homology model on.

Using the target sequence T0101 from CASP 4, identified as a "400 amino acid
pectate lyase L" from a bacterium called Erwinia chrysanthemi, we searched the PDB
for homologs. We started by using the PDB SearchFields form to initiate a FASTA
search.

The results returned were disheartening at first glance. As the CASP target list
indicated, there were no strong sequence homologies to the target to be found in the
PDB. None of the matches had E-values less than 1, though there were several in the
less-than-10 range. None of the matches spanned the full length of the protein, the
longest matching being a 330 amino acid overlap with a chondroitinase, with an E-
value of 3.9.

Each of the top scoring proteins looked different, too, as you can see in Figure 10-5.
The top match was an alpha-beta barrel type structure, while the second match (the
chondroitinase) was a mainly beta structure with a few decorative alpha helices, and
the third match was an entirely different, multidomain all-beta structure.

Figure 10-5. Pictures of top three sequence matches of a target sequence
from CASP 4

271

Out of curiosity, we also did a simple keyword search for pectate lyase in the PDB.
There were eight pectate lyase structures listed, but none, apparently, were close
enough in sequence to the T0101 target to be recognized as related by sequence
information alone. None of these structures was classified as pectate lyase L; they
included types A, E, and C. However, we observed that each of the pectate lyase
molecules in the PDB had a common structural feature: a large, quasihelical
arrangement of short beta strands known as a beta solenoid, or, less picturesquely,
as a single-stranded right-handed beta helix (Figure 10-6).

Figure 10-6. The beta-solenoid domain

272

10.7.2 Looking for Distant Homologies
We used CE to examine the structural neighbors of the known pectate lyases.
Interestingly, one of the three proteins (1DBG, a chondroitinase from Flavobacterium
heparinium) we first identified with FASTA as a sequence match for our target
sequence showed up as a high-scoring structural neighbor of many of the known
pectate lyases.

Although the homology between T0101 and these other pectate lyases wasn't
significant, the sequence similarity between T0101 and their close structural
neighbor 1DBG seemed to suggest that the structure of our target protein might be
distantly related to that of the other pectate lyases (Figure 10-7). Note that the
alignment in the figure shows a strongly conserved structural domain—the ladderlike
structure at the right of the molecule where the chain traces coincide.

Figure 10-7. A structural alignment of known pectate lyase structures; the
beta solenoid domain is visible as a ladderlike structure in the center of the

molecule

273

However, in order to do any actual homology modeling, we need to somehow align
the T0101 sequence to potential template structures. And since none of the pectate
lyase sequences were similar enough to the unknown sequence to be aligned to it
using standard pairwise alignment, we would need to get a little bit crafty with our
alignment strategy.

10.7.3 Predicting Secondary Structure from Sequence
We applied several secondary structure prediction algorithms to the T0101 target
sequence using the JPred structure prediction server. While the predictions from
each method aren't exactly the same, we can see from Figure 10-8 that the
consensus from JPred is clear: the T0101 sequence is predicted to form many short
stretches of beta structure, exactly the pattern that is required to form the beta-
solenoid domain.

Figure 10-8. Partial secondary structure predictions for T0101, from JPred

10.7.4 Using Threading Methods to Find Potential Folds
We also sent the sequence to the 3D-PSSM and 123D+ threading servers to analyze
its fitness for various protein folds. The top-scoring results from the 3D-PSSM
threading server, with E-values in the 95% certainty range, included the proteins
1AIR (a pectate lyase), 1DBG (the chondroitinase that was identified as a homolog of
our unknown by sequence-based searching), 1IDK, and 1PCL, all pectate lyases
identified by CE as structural neighbors of 1DBG. These proteins were also found in
the top results from 123D+.

10.7.5 Using Profile Methods to Align Distantly Related
Sequences
We now had evidence from multiple sources that suggested the structures 1AIR,
1DBG, and 1IDK would be reasonable candidates to use as templates to construct a
model of the T0101 unknown sequence. However, the remaining challenge was to
align the unknown sequence to the template structures. We had many different

274

alignments to work with: the initial FASTA alignment of the unknown with 1DBG; the
CE structural alignment of 1DBG and its structural neighbors 1AIR, 1DBG, and 1IDK;
and the individual alignments of predicted secondary structure in the unknown to
known secondary structure for each of the database hits from 3D-PSSM. Each
alignment was different, of course, because they were generated by different
methods. We chose to combine the information in the individual 3D-PSSM sequence-
to-structure alignments of the unknown sequence with 1AIR and 1IDK into a single
alignment file. We did this by aligning those two alignments to each other using
Clustal's Profile Alignment mode. Finally, we wrote out the alignment to a single file
in a format appropriate for Modeller and used this as input for our first approach.

10.7.6 Building a Homology Model
We created the following input for Modeller:
The input script, peclyase.top:

Homology modelling by the MODELLER TOP routine 'model'.

INCLUDE # Include the predefined TOP routines
SET ALNFILE = 'peclyase.ali' # alignment filename
SET KNOWNS = '1air','1idk' # codes of the templates
SET SEQUENCE = 't0101' # code of the target
SET ATOM_FILES_DIRECTORY = './templates' # directories for input atom
files
SET STARTING_MODEL= 1 # index of the first model
SET ENDING_MODEL = 3 # index of the last model

(determines how many models to
calculate)
CALL ROUTINE = 'model' # do homology modeling

We created a sequence alignment file, peclyase.ali, in PIR format, built as described
in the example and modified to indicate to Modeller whether each sequence was a
template or a target.

We also placed PDB files, containing structural information for the template chains of
1AIR and 1IDK, in a templates subdirectory of our working directory. The files were
named 1air.atm and 1idk.atm, as Modeller requires, and we then ran Modeller to
create structural models. The models looked similar to their templates, especially in
the beta solenoid domain, and evaluated reasonably well by standard methods of
structure verification, including 3D/1D profiles and geometric evaluation methods.
However, just like the actual CASP 4 competitors, we await the publication of the
actual structure of the T0101 target for validation of our structural model.

10.8 Summary
Solving protein structure is complicated at best, but as you've seen, there are a
number of software tools to make it easier. Table 1 provides a summary of the most
popular structure prediction tools and techniques available to you.

Table 1. Structure Prediction Tools and Techniques
What you do Why you do it What you use to do it

275

Secondary
structure
prediction

As a starting point for classification and
structural modeling

JPred, Predict-
Protein

Threading
To check the fitness of a protein sequence to
assume a known fold; to identify distantly
related structural homologs

3D-PSSM, PhD,
123D

Homology
modeling

To build a model from a sequence, based on
homologies to known structures

Modeller, SWISS-
MODEL

Model verification To check the fitness of a modeled structure forits protein sequence
VERIFY-3D,
PROCHECK, WHAT
IF

Ab-initio
structure
modeling

To predict a 3D structure from sequence in the
absence of homology ROSETTA, RAMP

Chapter 11. Tools for Genomics and
Proteomics
The methods we have discussed so far can be used to analyze a single sequence or
structure and compare multiple sequences of single-gene length. These methods can
help you understand the function of a particular gene or the mechanism of a
particular protein. What you're more likely to be interested in, though, is how gene
functions manifest in the observable characteristics of an organism: its phenotype. In
this chapter we discuss some datatypes and tools that are beginning to be available
for studying the integrated function of all the genes in a genome.

What sets genomic science apart from the traditional experimental biological
sciences is the emphasis on automated data gathering and integration of large
volumes of information. Experimental strategies for examining one gene or one
protein are gradually being replaced by parallel strategies in which many genes are
examined simultaneously. Bioinformatics is absolutely required to support these
parallel strategies and make the resulting data useful to the biology community at
large. While bioinformatics algorithms may be complicated, the ultimate goals of
bioinformatics and genomics are straightforward. Information from multiple sources
is being integrated to form a complete picture of genomic function and its expression
as the pheotype of an organism, as well as to allow comparison between the
genomes of different organisms. Figure 11-1 shows the sort of flowchart you might
create when moving from genetic function to phenotypic expression.

Figure 11-1. A flowchart moving from genome to phenotype

276

From the molecular level to the cellular level and beyond, biologists have been
collecting information about pieces of this picture for decades. As in the story of the
blind men and the elephant, focusing on specific pieces of the biological picture has
made it difficult to step back and see the functions of the genome as a whole. The
process of automating and scaling up biochemical experimentation, and treating
biochemical data as a public resource, is just beginning.

The Human Genome Project has not only made gigabytes of biological sequence
information available; it has begun to change the entire landscape of biological
research by its example. Protein structure determination has not yet been automated
at the same level as sequence determination, but several pilot projects in structural
genomics are underway, with the goal of creating a high-speed structure
determination pipeline. The concept behind the DNA microarray experiment—
thousands of microscopic experiments arrayed on a chip and running in parallel—
doesn't translate trivially to other types of biochemical and molecular biology
experiments. Nonetheless, the trend is toward efficiency, miniaturization, and
automation in all fields of biological experimentation.

A long string of genomic sequence data is inherently about as useful as a reference
book with no subject headings, page numbers, or index. One of the major tasks of
bioinformatics is creating software systems for information management that can
effectively annotate each part of a genome sequence with information about
everything from its function, to the structure of its protein product (if it has one), to
the rate at which the gene is expressed at different life stages of an organism.
Currently, the only way to get the functional information that is needed to fully
annotate and understand the workings of the genome is traditional biochemical
experimentation, one gene or protein at a time. The growing genome databases are
the motivation for further parallelization and automation of biological research.

Another task of genome information management systems is to allow users to make
intuitive, visual comparisons between large data sets. Many new data integration
projects, from visual comparison of multiple genomes to visual integration of
expression data with genome map data, are under development.

Bioinformatics methods for genome-level analysis are obviously not as advanced in
their development as sequence and structure analysis methods. Sequence and
structure data have been publicly available since the 1970s; a significant number of

277

whole genomes have become available only very recently. In this chapter, we focus
on some data presentation and search strategies the research community has
identified as particularly useful in genomic science.

11.1 From Sequencing Genes to Sequencing Genomes
In Chapter 7, we discussed the chemistry that allows us to sequence DNA by
somehow producing a ladder of sequence fragments, each differing in size by one
base, which can then be separated by electrophoresis. One of the first computational
challenges in the process of sequencing a gene (or a genome) is the interpretation of
the pattern of fragments on a sequencing gel.

11.1.1 Analysis of Raw Sequence Data: Basecalling
The process of assigning a sequence to raw data from DNA sequencing is called
basecalling. As an end user of genome sequence data, you don't have access to the
raw data directly from the sequencer; you have to rely on a sequence that has been
assigned to this data by some kind of processing software. While it's not likely you
will actually need basecalling software, it is helpful to remember what the software
does and that it can give rise to errors.

If this step doesn't produce a correct DNA sequence, any subsequent analysis of the
sequence is affected. All sequences deposited in public databases are affected by
basecalling errors due to ambiguities in sequencer output or to equipment
malfunctions. EST and genome survey sequences have the highest error rates (1/10
-1/100 errors per base), followed by finished sequences from small laboratories
(1/100 - 1/1,000 per base) and finished sequences from large genome sequencing
centers (1/10,000 -1/100,000 per base).[1] Any sequence in GenBank is likely to have
at least one error. Improving sequencing technology, and especially the signal
detection and processing involved in DNA sequencing, is still the subject of active
research.

[1] These values were provided by Dr. Sean Eddy of Washington University.

There are two popular high-throughput protocols for DNA sequencing. As discussed
earlier, DNA sequencing as it is done today relies on the ability to create a ladder of
fragments of DNA at single-base resolution and separate the DNA fragments by gel
electrophoresis. The popular Applied Biosystems sequencers label the fragmented
DNA with four different fluorescent labels, one for each base-specific fragmentation,
and run a mixture of the four samples in one gel lane. Another commonly used
automated sequencer, the Pharmacia ALF instrument, runs each sample in a
separate, closely spaced lane. In both cases, the gel is scanned with a laser, which
excites each fluorescent band on the gel in sequence. In the four-color protocol, the
fluorescence signal is elicited by a laser perpendicular to the gel, one lane at a time,
and is then filtered using four colored filters to obtain differential signals from each
fluorescent label. In the single-color protocol, a laser parallel to the gel excites all
four lanes from a single sequencing experiment at once, and the fluorescent
emissions are recorded by an array of detectors. Each of these protocols has its
advantages in different types of experiments, so both are in common use. Obviously,
the differences in hardware result in differences in the format of the data collected,
and the use of proprietary file formats for data storage doesn't resolve this problem.

278

There are a variety of commercial and noncommercial tools for automated
basecalling. Some of them are fully integrated with particular sequencing hardware
and input datatypes. Most of them allow, and in fact require, curation by an expert
user as sequence is determined.

The raw result of sequencing is a record of fluorescence intensities at each position in
a sequencing gel. Figure 11-2 shows detector ouput from a modern sequencing
experiment. The challenge for automated basecalling software is to resolve the
sequence of apparent fluorescence peaks into four-letter DNA sequence code. While
this seems straightforward, there are fairly hard limits on how much sequence can
be read in a single experiment. Because separation of bands on a sequencing gel
isn't perfect, the quality of the separation and the shape of the bands deteriorates
over the length of the gel. Peaks broaden and intermingle, and at some point in the
sequencing run (usually 400 -500 bases), the peaks become impossible to resolve.
Various properties of DNA result in nonuniform reactions with the sequencing gel, so
that fragment mobility is slightly dependent on the identity of the last base in a
fragment; overall signal intensities can depend on local sequence and on the
reagents used in the experiment. Unreadable regions can occur when DNA fragments
fold back upon themselves or when a sequencing primer reacts with more than one
site in a DNA sequence, leading to sample heterogeneity. Because these are fairly
well-understood, systematic errors, computer algorithms can be developed to
compensate for them. The ultimate goal of basecalling software development is to
improve the accuracy of each sequence read, as well as to extend the range of
sequencing runs, by providing means to deconvolute the more ambiguous
fluorescence peaks at the end of the run.

Figure 11-2. Detector output from a modern sequencing experiment

Most sequencing projects deal with the inherent errors in the sequencing process by
simply sequencing each region of a genome multiple times and by sequencing both
DNA strands (which results in high-quality reads of both ends of a sequence). If you
read that a genome has been sequenced with 4X coverage or 10X coverage, that
means that portion of the genome has been sequenced multiple times, and the
results merged to produce the final sequence.

Modern sequencing technologies replace gels with microscopic capillary systems, but
the core concepts of the process are the same as in gel-based sequencing:
fragmentation of the DNA and separation of individual fragments by electrophoresis.

279

At this point, the major genome databases don't provide raw sequence data to users,
and for most applications, access to raw sequence data isn't really necessary.
However, it is likely that, with the constant growth of computing power, this will
change in the future, and that you may want to know how to reanalyze the raw
sequence data underlying the sequences available in the public databases.

One noncommercial software package for basecalling is Phred, which is available
from the University of Washington Genome Center. Phred runs on either Unix or
Windows NT workstations. It uses Fourier analysis to resolve fluorescence traces to
predict an evenly spaced set of peak locations, then uses dynamic programming to
match the actual peak locations with the predicted results. It then annotates output
from basecalling with the probability that the call is an error. Phred scores represent
scaled negative log probability that a base call is in error; hence, the higher the
Phred score, the lower the probability that an error has been made. These values can
be helpful in determining whether a region of the genome may need to be
resequenced. Phred can also feed data to a sequence-assembly program called
Phrap, which then uses both the sequence information and quality scores to aid in
sequence assembly.

11.1.2 Sequencing an Entire Genome
Genome sequencing isn't simply a scaled-up version of a gene-sequencing run. As
noted earlier, the sequence length limit of a sequencing run is something like 500
base pairs. And the length of a genome can range from tens of thousands to billions
of base pairs. So in order to sequence an entire genome, the genome has to be
broken into fragments, and then the sequenced fragments need to be reassembled
into a continuous sequence.

There are two popular strategies for sequencing genomes: the shotgun approach and
the clone contig approach. Combinations of these strategies are often used to
sequence larger genomes.

11.1.2.1 The shotgun approach

Shotgun DNA sequencing is the ultimate automated approach to DNA sequencing. In
shotgun sequencing, a length of DNA, either a whole genome or a defined subset of
the genome, is broken into random fragments. Fragments of manageable length
(around 2,000 KB) are cloned into plasmids (together, all the clones are called a
clone library). Plasmids are simple biological vectors that can incorporate any
random piece of DNA and reproduce it quickly to provide sufficient material for
sequencing.

If a sufficiently large amount of genomic DNA is fragmented, the set of clones spans
every base pair of the genome many times. The end of each cloned DNA fragment is
then sequenced, or in some cases, both ends are sequenced, which puts extra
constraints on the way the sequences can be assembled. Although only 400 -500
bases at the end or ends of the fragment are sequenced, if enough clones are
randomly selected from the library and sequenced, the amount of sequenced DNA
still spans every base pair of the genome several times. In a shotgun sequencing
experiment, enough DNA sequencing to span the entire genome 6 -10 times is
usually required.

280

The final step in shotgun sequencing is sequence assembly, which we discuss in
more detail in the next section. Assembly of all the short sequences from the
shotgun sequencing experiment usually doesn't result in one single complete
sequence. Rather, it results in multiple contigs—unambiguously assembled lengths of
sequence that don't overlap each other. In the assembly process, contigs start and
end because a region of the genome is encountered from which there isn't enough
information (i.e., not enough clones representing that region) to continue assembling
fragments. The final steps in sequencing a complete genome by shotgun sequencing
are either to find clones that can fill in these missing regions, or, if there are no
clones in the original library that can fill in the gaps, to use PCR or other techniques
to amplify DNA sequence that spans the gaps.

Recently, Celera Genomics has shown that shotgun DNA sequencing—sequencing
without a map—can work at the whole genome level even in organisms with very
large genomes. The largely completed Drosophila genome sequence is evidence of
their success.

11.1.2.2 The clone contig approach

The clone contig approach relies on shotgun sequencing as well, but on a smaller
scale. Instead of starting by breaking down the entire genome into random
fragments, the clone contig approach starts by breaking it down into restriction
fragments, which can then be cloned into artificial chromosome vectors and
amplified. Restriction enzymes are enzymes that cut DNA. These enzymes are
sequence-specific; that is, they recognize only one specific sequence of DNA,
anywhere from 6-10 base pairs in length. By pure statistics, any base has a 1 in 4
chance of occurring randomly in a DNA sequence; an N-residue sequence has a 1 in
4N chance of occurring. Enzymes that cut at a specific 6 -10 base pair sequence of
DNA end up cutting genomic DNA relatively rarely, but because DNA sequence isn't
random, the restriction enzyme cuts result in a specific pattern of fragment lengths
that is characteristic of a genome.

Each of the cloned restriction fragments can be sequenced and assembled by a
standard shotgun approach. But assembly of the restriction fragments into a whole
genome is a different sort of problem. When the genome is digested into restriction
fragments, it is only partially digested. The amount of restriction enzyme applied to
the DNA sample is sufficient to cut at only approximately 50% of the available
restriction sites in the sample. This means that some fragments will span a particular
restriction site, while other fragments will be cut at that particular site and will span
other restriction sites. So the clone library that is made up of these restriction
fragments will contain overlapping fragments.

Chromosome walking is the process of starting with a specific clone, then finding the
next clone that overlaps it, and then the next, etc. Methods such as probe
hybridization or PCR are used to help identify the restriction fragment that has been
inserted into each clone, and there are a number of experimental strategies that can
make building up the genome map this way less time-consuming. A genome map is
a record of the location of known features in the genome, which makes it relatively
simple to associate particular clone sequences with a specific location in the genome
by probe hybridization or other methods.

281

Genomes can be mapped at various levels of detail. Geneticists are used to thinking
in terms of genetic linkage maps, which roughly assign the genes that give rise to
particular traits to specific loci on the chromosome. However, genetic linkage maps
don't provide enough detail to support the assembly of a full genome worth of
sequence, nor do they point to the actual DNA sequence that corresponds to a
particular trait. What genetic linkage maps do provide, though, is a set of ordered
markers, sometimes very detailed depending on the organism, which can help
researchers understand genome function (and provide a framework for assembling a
full genome map).

Physical maps can be created in several ways: by digesting the DNA with restriction
enzymes that cut at particular sites, by developing ordered clone libraries, and
recently, by fluorescence microscopy of single, restriction enzyme-cleaved DNA
molecules fixed to a glass substrate. The key to each method is that, using a
combination of labeled probes and known genetic markers (in restriction mapping) or
by identifying overlapping regions (in library creation), the fragments of a genome
can be ordered correctly into a highly specific map (see Figure 11-2).

11.1.2.3 LIMS: Tracking all those minisequences

In carrying out a sequencing project, tracking the millions of unique DNA samples
that may be isolated from the genome is one of the biggest information technology
challenges. It's also probably one of the least scientifically exciting, because it
involves keeping track of where in the genome each sample came from, which
sample goes into each container, where each container goes in what may be a huge
sample storage system, and finally, which data came from which sample. The
systems that manage output from high-throughput sequencing are called Laboratory
Information Management Systems (LIMS), and while we will not discuss them in the
context of this book, LIMS development and maintenance makes up the lion's share
of bioinformatics work in industrial settings. Other high-throughput technologies,
such as microarrays and cheminformatics, also require complicated LIMS support.

11.2 Sequence Assembly
Basecalling is only the first step in putting together a complete genome sequence.
Once the short fragments of sequence are obtained, they must be assembled into a
complete sequence that may be many thousands of times their length. The next step
is sequence assembly.

Sequence assembly isn't something you're likely to be doing on your own on a large
scale, unless you happen to be working for a genome project. However, even small
labs may need to solve sequence-assembly problems that require some computer
assistance.

DNA sequencing using a shotgun approach provides thousands or millions of
minisequences, each 400 -500 fragments in length. The fragments are random and
can partially or completely overlap each other. Because of these overlaps, every
fragment in the set can be identified by sequence identity as adjacent to some
number of other fragments. Each of those fragments overlaps yet another set of
fragments, and so on. It's standard procedure for the sequences of both ends of

282

some fragments to be known, and the sequences of only one end of other fragments
to be known. Figure 11-3 illustrates the shotgun sequencing approach.

Figure 11-3. The shotgun DNA sequencing approach

Ultimately, all the fragments need to be optimally tiled together into one continuous
sequence. Identifying sequence overlaps between fragments puts some constraints
on how the sequences can be assembled. For some fragments, the length of the
sequence and the sequences of both its ends are known, which puts even more
constraints on how the sequences can be assembled. The assembly algorithm
attempts to satisfy all the constraints and produce an optimal ordering of all the
fragments that make up the genome.

Repetitive sequence features can complicate the assembly process. Some fragments
will be uncloneable, and the sequencing process will fail in other cases, leaving gaps
in the DNA sequence that must be resolved by resequencing. These gaps complicate
automated assembly. If there isn't sufficient information at some point in the
sequence for assembly to continue, the sequence contig that is being created comes
to an end, and a new contig starts when there is sufficient sequence information for
assembly to resume.

The Phrap program, available from the University of Washington Genome Center,
does an effective job assembling sequence fragments, although a large amount of
computer time is required. The accompanying program Consed is a Unix-based
editor for Phrap sequence assembly output. TIGR Assembler is another genome
assembly package that works well for small genomes, BACs, or ESTs.

11.3 Accessing Genome Informationon the Web
Partial or complete DNA sequences from hundreds of genomes are available in
GenBank. Putting those sequence records together into an intelligible representation

283

of genome structure isn't so easy. There are several efforts underway to integrate
DNA sequence with higher-level maps of genomes in a user-friendly format. So far,
these efforts are focused on the human genome and genomes of important plant and
animal model systems. They aren't collected into one uniform resource at present,
although NCBI does aim to be comprehensive in its coverage of available genome
data eventually.

Looking at genome data is analogous to looking at a map of the world. You may
want to look at the map from a distance, to see the overall layout of continents and
countries, or you may want to find a shortcut from point A to point B. Each choice
requires a different sort of map. However, the maps need to be linked, because you
may want to know the general directions from San Diego to Blacksburg, VA, but may
also want to know exactly how to get to a specific building on the Virginia Tech
campus when you get there. The approach that web-based genome analysis tools
are taking is similar to the approach taken by online map databases such as
MapQuest. Place names and zip codes are analogous to gene names and GenBank
IDs. You can search as specifically as you wish, or you can begin with a top view of
the genome and zoom in.

The genome map resources have the same limitations as online map resources, as
well. You can search MapQuest and see every street in Blacksburg, but ask
MapQuest for a back-road shortcut between Cochin and Mangalore on the southwest
coast of India, and it can't help you. Currently, NCBI and EMBL provide detailed
maps and tools for looking at the human genome, but if your major interest is the
cat genome, you're (at least this year) out of luck.

Genome resources are also limited by the capabilities of bioinformatics analysis
methods. The available analysis tools at the genome sites are usually limited to
sequence comparison tools and whatever single-sequence feature-detection tools are
available for that genome, along with any information about the genome that can be
seamlessly integrated from other databases. If you are hoping to do something with
tools at a genome site you can't do with existing sequence or structure analysis
tools, you will still be disappointed. What genome sites do provide is a highly
automated user experience and expertly curated links between related concepts and
entities. This is a valuable contribution, but there are still questions that can't be
answered.

11.3.1 NCBI Genome Resources
NCBI offers access to a wide selection of web-based genome analysis tools from the
Genomic Biology section of its main web site. These tools are designed for the
biologist seeking answers to specific questions. Nothing beyond basic web skills and
biological knowledge is required to apply these tools to a question of interest. Their
interfaces are entirely point-and-click, and NCBI supplies ample documentation to
help you learn how to use their tools and databases.

Here's a list of the available tools:

Genome Information

284

Genome project information is available from the Entrez Genomes page at
NCBI. Database listings are available for the full database or for related
groups of organisms such as microorganisms, archaea, bacteria, eukaryotes,
and viruses. Each entry in the database is linked to a taxonomy browser entry
or a home page with further links to available information about the
organism. If a genome map of the organism is available, a "See the Genome"
link shows up on the organism's home page. From the home page, you can
also download genome sequences and references.

Map Viewer

If a genome map is available for the organism, you can click on parts of the
cartoon map that is first displayed and access several different viewing
options. Depending on the genome, you can access links to overview maps,
maps showing known protein-coding regions, listings of coding regions for
protein and RNA, and other information. Information is generally
downloadable in text format. Map Viewer distinguishes between four levels of
information: the organism's home page, the graphical view of the genome,
the detailed map for each chromosome (aligned to a master map from which
the user can select where to zoom in), and the sequence view, which
graphically displays annotations for regions of the genome sequence. Full Map
Viewer functionality is available only for human and drosophila genomes at
the time of this writing; however, for any complete genome, clickable genome
maps and views of the annotated genome at the sequence level are available.

ORF Finder

The Open Reading Frame (ORF) Finder is a tool for locating open reading
frames in a DNA sequence. ORF finders translate the sequence using standard
or user-specified genetic code. In noncoding DNA, stop codons are frequently
found. Only long uninterrupted stretches without stop codons are taken to be
coding regions. Information from the ORF finder can provide clues about the
correct reading frame for a DNA sequence and about where coding regions
start and stop. For many genomes found in the Entrez Genomes database,
ORF Finder is available as an integrated tool from the map view of the
genome.

LocusLink

LocusLink is a curated database of genetic loci in several eukaryotic
organisms that give rise to known phenotypes. LocusLink provides an
alphabetical listing of traits as well as links to HomoloGene and Map Viewer.

HomoloGene

HomoloGene is a database of pairwise orthologs (homologous genes from
different organisms that have diverged by speciation, as opposed to paralogs
that have diverged by gene duplication) across four major eukaryotic
genomes: human, mouse, rat, and zebrafish. The ortholog pairs are identified
either by curation of literature reports or calculation of similarity. The
HomoloGene database can be searched using gene symbols, gene names,
GenBank accession numbers, and other features.

285

Clusters of Orthologous Groups (COG)

COG is a database of orthologous protein groups. The database was
developed by comparing protein sequences across 21 complete genomes. The
entries in COG represent genome functions that are conserved throughout
much of evolutionary history—functions that were developed early and
retained in all of the known complete genomes. The authors' assumption is
that these ancient conserved sequences comprise the minimal core of
functionality that a modern species (i.e., one that has survived into the era of
genome sequencing) requires. The COG database can be searched by
functional category, phylogenetic pattern, and a number of other properties.

NCBI also provides detailed genome-specific resources for several important
eukaryotic genomes, including human, fruit fly, mouse, rat, and zebrafish.

11.3.2 TIGR Genome Resources
The Institute for Genome Research (TIGR, http://www.tigr.org) is one of the main
producers of new genome sequence data, along with the other major human genome
sequencing centers and commercial enterprises such as Celera. TIGR's main
sequencing projects have been in microbial and crop genomes, and human
chromosome 16. TIGR recently announced the Comprehensive Microbial Resource, a
complete microbial genome resource for all of the genomes they have sequenced. At
the present time, each microbial genome has its own web page from which various
views of the genome are available. There are also tools within the resource that
allow you to search the omniome, as TIGR designates the combined genomic
information in its database. The TIGR tools aren't as visual as the NCBI genome
analysis tools. Selection of regions to examine requires you to enter specific
information into a form rather than just pointing and clicking on a genome map.
However, the TIGR resources are a useful supplement to the NCBI tools, providing a
different view on the same genetic information.

TIGR maintains many genome-specific databases focused on expressed sequence
tags (ESTs) rather than complete genomic data. ESTs are partial sequences from
either end of a cDNA clone. Despite their incompleteness, ESTs are useful for
experimental molecular biologists. Since cDNA libraries are prepared by producing
the DNA complement to cellular mRNA (messenger RNA), a cDNA library gives clues
as to what genes are actually expressed in a particular cell or tissue. Therefore, a
sequence match with an EST can be an initial step in helping to identify the function
of a new gene. TIGR's EST databases can be searched by sequence, EST identifier,
cDNA library name, tissue, or gene product name, using a simple forms-based web
interface.

11.3.3 EnsEMBL
EnsEMBL is a collaborative project of EMBL, EBI, and the Sanger Centre
(http://www.sanger.ac.uk) to automatically track sequenced fragments of the
human genome and assemble them into longer stretches. Automated analysis
methods, such as genefinding and feature-finding tools and sequence-comparison
tools, are then applied to the assembled sequence and made available to users
through a web interface.

http://www.tigr.org

286

In June 2000, the Human Genome consortium announced the completion of the first
map of the human genome. It's important to stress that such maps, and indeed
much of the genomic information now available, are only drafts of a final picture that
may take years to assemble. To remain useful, the draft maps must be constantly
updated to stay in sync with the constantly updated sequence databases. The
EnsEMBL project expects to apply its automated data analysis pipeline to many
different genomes, beginning with human and mouse.

There are three ways to search EnsEMBL: a BLAST search of a query sequence
against the database; a search using a known gene, transcript, or map marker ID; or
a chromosome map browser that allows you to pick a chromosome and zoom in to
ever-more specific regions. All these tools are relatively self-explanatory and
available from the EnsEMBL web site. In order to use them, however, you should
know something of what you are looking for or on which chromosome to look.

11.3.4 Other Sequencing Centers
TIGR isn't the only genome center to provide software and online tools for analyzing
genomic data. Genome sequencing programs generally incorporate a bioinformatics
component and attract researchers with interests in developing bioinformatics
methods; their web sites are good points of entry to the bioinformatics world. The
University of Washington Genome Center is known for the development of sequence
assembly tools—its Phred and Phrap software are widely used. Other genome centers
include, but aren't limited to, the Sanger Centre, the DOE Joint Genome Institute,
Washington University in St. Louis, and many corporate centers.

A complete list of genome sequencing projects in progress and active genome
centers can be found online in the Genomes OnLine Database (GOLD), a public site
maintained by Integrated Genomics, Inc.
(http://wit.integratedgenomics.com/GOLD/).

11.3.5 Organism-Specific Resources
The Arabidopsis Information Resource (TAIR) is an excellent example of an
organism-specific genome resource, this one focusing on the widely used plant
model system Arabidopsis thaliana. In addition to the standard features offered at
EnsEMBL and NCBI, such as clickable and zoomable chromosome maps and
sequence analysis tools, TAIR offers a variety of expert-curated links to other
information for users of the resource. TAIR is limited in its scope to Arabidopsis, but
it is a much deeper resource than the general public databases. Similar resources are
available for many organisms, from maize to zebrafish. Listings of online genome
resources can be located at several sites, such as GOLD, NCBI, and EMBL.

11.4 Annotating and Analyzing Whole Genome
Sequences
Genome data presents completely new issues in data storage and analysis:

· Genome sequences are extremely large.
· Users need to access genome data both as a whole and as meaningful pieces.

287

· The majority of the sequence in a genome doesn't correspond to known
functionality.

Annotation of the genome with functional information can be accomplished by
several means: comparison with existing information for the organism in the
sequence databases, comparison with published information in the primary
literature, computational methods such as ORF detection and genefinding, or
propagation of information from one genome to another by evolutionary inference
based on sequence comparison. Due to the sheer amount of data available,
automatic annotation is desirable, but it must be automatic without propagating
errors. The use of computational methods is fallible; sequence similarity searches
can result in hits that aren't biologically meaningful, and genefinders often have
difficulty detecting the exact start and end of a gene. Sometimes experimental
information is incorrect or is recorded incorrectly in the database. Using this
information to annotate genomes leaves a residue of error in the database, which
can then be propagated further by use of comparative methods.

11.4.1 Genome Annotation
Genome annotation is a difficult business. This is in part because there are a huge
number of different pieces of information attached to every gene in a genome. Not
every piece of information is interesting to every user, and not every piece of this
information can (or should) be crammed in a single file of information about the
gene. Genome annotation relies on relational databases to integrate genome
sequence information with other data.[2]

[2] The term relational database should give you a clue that the function of the database is to
maintain relationships or connections among entries. We discuss this in more detail in Chapter
13.

The primary sources of information about what genes do are laboratory experiments.
It may take many experiments to figure out what a gene does. Ideally, all that
diverse experimental data should somehow be associated with the gene annotation.
What this means in practice is hyperlinking of content between multiple databases—
sequence, structure, and functional genomics fully linked together in a queryable
system. This strategy is beginning to be implemented in most of the major public
databases, although the goal of "one world database" (in the user's perception) has
not yet been reached and perhaps never will.

11.4.1.1 MAGPIE

MAGPIE is an environment for annotation of genomes based on sequence similarity.
It can maintain status information for a genome project and make information about
the genome available on the Web, as well as provide an interface for automated
sequence similarity-based and manual annotation. Even if you're not maintaining a
genome database for public use, a look at the features of MAGPIE may help clarify
some of the information technology issues in genome annotation. The Sulfolobus
solfataricus P2 Genome Project and many other smaller genome projects have
implemented MAGPIE; the S. solfataricus project provides information on its web site
about the role MAGPIE plays in the genome annotation process.

11.4.2 Genome Comparison

288

Pairwise or multiple comparison of genomes is an idea that will be useful for many
studies, ranging from basic questions of evolutionary biology to very specific clinical
questions, such as the identification of genetic polymorphisms, which give rise to
disease states or significant variations in phenotype.

Why compare whole genomes rather than just comparing genes one at a time? As
the Human Genome Project reaches completion, researchers are just beginning to
explore in detail how genome structure affects genome function. Is junk DNA really
junk? Are there structural features in DNA that control expression? Are there
promoters and regulatory regions we haven't yet figured out? Genome comparison
can help answer such questions by pointing to regions of similarity within
uncharacterized or even supposedly redundant DNA. Genome comparison will also
aid in genomic annotation. Prototype genome comparisons have helped to justify the
sequencing of additional genomes; the comparison of mouse and human genomes is
one such example. Genome comparison is useful both at the map level and directly
at the sequence level.

11.4.2.1 PipMaker

PipMaker is a tool that compares two DNA sequences of up to 2 MB each (longer
sequences will be handled by the new Version 2.0, to be released soon) and
produces a percent identity plot as output. This is useful in identifying large-scale
patterns of similarity in longer sequences, although obviously not entire larger
genomes. The process of using PipMaker is relatively simple. Starting with two
FASTA-format sequence files, you first generate a set of instructions for masking
sequence repeats (generated using the RepeatMasker server). This reduces the
number of uninformative hits in the sequence comparison. The resulting information,
plus a simple file containing a numerical list of known gene positions, is submitted to
the PipMaker web server at Penn State University and the results are emailed to you.
A detailed PipMaker tutorial is available at the web site
(http://bio.cse.psu.edu/pipmaker/). PipMaker relies on BLASTZ to align sequences.
BLASTZ is an experimental version of BLAST designed for extremely long sequences
and developed at NCBI.

11.4.2.2 MUMmer

Another program for pairwise genome comparison is TIGR's MUMmer. MUMmer was
designed to meet the needs of the sequencing projects at TIGR and is optimized for
comparing microbial genome sequences that are assumed to be relatively similar. Its
first application was a detailed comparison of genomes of two strains of M.
tuberculosis. MUMmer can compare sequences millions of base pairs in length and
produce colorful visualizations of regions of similarity. MUMmer is based on a
computer algorithm called a suffix tree, which essentially makes it easy for the
system to rapidly handle a large number of pairwise comparisons. The dynamic
programming algorithm used in standard BLAST comparison doesn't scale well with
sequence length. For genome-length sequences, dynamic programming methods are
unacceptably slow. MUMmer is an example of a novel method developed to get
around the problems involved in using standard pairwise sequence comparison to
compare full genome sequences. MUMmer is designed for Unix systems and is freely
available for use in nonprofit institutions. A new public web interface to MUMmer has
recently become available on the TIGR web site.

289

11.5 Functional Genomics: New Data Analysis
Challenges
The advent of high-speed sequencing methods has changed the way we study the
DNA sequences that code for proteins. Once, finding these bits of DNA in the genome
of an organism was the goal, without much concern for the context. It is now
becoming possible to view the whole DNA sequence of a chromosome as a single
entity and to examine how the parts of it work together to produce the complexity of
the organism as a whole.

The functions of the genome break down loosely into a few obvious categories:
metabolism, regulation, signaling, and construction. Metabolic pathways convert
chemical energy derived from environmental sources (i.e., food) into useful work in
the cell. Regulatory pathways are biochemical mechanisms that control what
genomic DNA does: when it is expressed and when it isn't. Genomic regulation
involves not only expressed genes but structural and sequence signals in the DNA
where regulatory proteins may bind. Signaling pathways control, among other
things, the movement of chemicals from one compartment in a cell to another.
Teasing out the complex networks of interactions that make up these pathways is
the work of biochemists and molecular biologists. Many regulatory systems for the
control of DNA transcription have been studied. Mapping these metabolic, regulatory,
and signaling systems to the genome sequence is the goal of the field of functional
genomics.

11.5.1 Sequence-Based Approaches for Analyzing Gene
Expression
In addition to genome sequence, GenBank contains many other kinds of DNA
sequence. Expressed sequence tag (EST) data for an organism can be an extremely
useful starting point for discovery-oriented exploration of gene expression. To
understand why this is, you need to recall what ESTs represent. ESTs are partial
sequences of cDNA clones; cDNA clones are DNA strands built using cellular mRNA
as templates.[3] In the cell, mRNA is RNA with a mission—to be converted into
protein, and soon. mRNA levels respond to changes in the cell or its environment;
mRNA levels are tissue-dependent, and they change during the life cycle of the
organism as well. Quantitation of mRNA or cDNA provides a pretty good measure of
what a genome is doing under particular conditions.

[3] The term transcriptome has been used to describe the collection of sequenced transcripts
from a given organism.

The sequence of a cDNA molecule built off an mRNA template should be the same as
the sequence of the DNA that originally served as a template for building the mRNA.
Sequencing a short stretch of bases from a cDNA sequence provides enough
information to localize the source of an mRNA in a genome sequence.

NCBI offers a database called dbEST that provides access to several thousand
libraries of ESTs. Quite a large number of these are human EST libraries, but there
are libraries from dozens of other organisms as well. NCBI's UniGene database
provides fully searchable access to specific EST libraries from human, mouse, rat,
and zebrafish. EST data within UniGene has been combined with sequences of well-

290

characterized genes and clustered, using an automated clustering procedure, to
identify groups of related sequences. The Library Browser can locate libraries of
interest within UniGene.

Another NCBI resource for sequence-based expression analysis is SAGEmap. Serial
Analysis of Gene Expression (SAGE) is an experimental technique in which the
transcription products of many genes are rapidly quantitated by sequencing short
"tags" of DNA at a specific position (usually a restriction site) in the sequence.
SAGEmap is a specialized online resource for the SAGE user community that
identifies potential SAGE tags in human DNA sequence and maps them to the
genome.

11.5.2 DNA Microarrays: Emerging Technologiesin Functional
Genomics
Recently, new technology has made it possible for researchers to rapidly explore
expression patterns of entire genomes worth of DNA. A microarray (or gene chip) is
a small glass slide—like a microscope slide—about a centimeter on a side. The
surface of the slide is covered with 20,000 or more precisely placed spots each
containing a different DNA oligomer (short polynucleotide chain). cDNA can also be
affixed to the slide to function as probes. Other media, such as thin membranes, can
be used in place of slides. The key to the experiment is that each piece of DNA is
immobilized—attached at one end to the slide's surface. Any reaction that results in
a change in microarray signal can be precisely assigned to a specific DNA sequence.

Microarray experiments capitalize on an important property of DNA. One strand of
DNA (or RNA) can hybridize with a complementary strand of DNA. If the
complementarity of the two strands is perfect, the bond between the two strands is
difficult to break. Each oligomer in a DNA microarray can serve as a probe to detect
a unique, complementary DNA or RNA molecule. These oligomers can be bound by
fluorescently labeled DNA, allowing the chip to be scanned using a confocal scanner
or CCD camera. The presence or absence of a complementary sequence in the DNA
sample being run over the chip determines whether the position on the array "lights
up" or not. Thus, the presence or absence of an average of 20,000 sequences can be
experimentally demonstrated with one gene chip.

Microarrays are conceptually no different from traditional hybridization experiments
such as Southern Blots (probing DNA samples separated on a filter with labeled
probe sequences) or Northern Blots (probing RNA samples separated on a filter). In
traditional blotting, the protein sample is immobilized; in microarray experiments,
the probe is immobilized, and the amount of information that can be collected in one
experiment is vastly larger. Figure 11-4 shows just a portion of a microarray scan
from Arabidopsis (Image courtesy of the Arabidopsis Functional Genomics
Consortium (AFGC) and the Stanford Microarray Database, http://genome-
www.stanford.edu/microarray). Other advantages are that microarray experiments
rely on fluorescent probes rather than the radioactive probes used in blotting
techniques, and gene chips can be manufactured robotically rather than laboriously
generated by hand.

Figure 11-4. A microarray scan

http://genome-
http://www.stanford.edu/microarray

291

Microarray technology is now routinely used for DNA sequencing experiments; for
instance, in testing for the presence of polymorphisms. Another recent development
is the use of microarrays for gene expression analysis. When a gene is expressed, an
mRNA transcript is produced. If DNA oligomers complementary to the genes of
interest are placed on the microarray, mRNA or cDNA copies can be hybridized to the
chip, providing a rapid assay as to whether or not those genes are being expressed.
Experiments like these have been performed in yeast to test differences in whole-
genome expression patterns in response to changes in ambient sugar concentration.
Microarray experiments can provide information about the behavior of every one of
an organism's genes in response to environmental changes.

11.5.3 Bioinformatics Challenges in Microarray Design and
Analysis
So why do microarrays merit a section in a book on bioinformatics? Bioinformatics
plays multiple roles in microarray experiments. In fact, it is difficult to conceive of
microarrays as useful without the involvement of computers and databases. From
the design of chips for specific purposes, to the quantitation of signals, to the
extraction of groups of genes with linked expression profiles, microarray analysis is a
process that is difficult, if not impossible, to do by eye or with a pencil and a
notebook.

The most popular laboratory equipment for microarray experiments, at the time of
this writing, is the Affymetrix machine; however, it's been followed closely by home-
built configurations. If you're working with a commercial arrayer, integrated software
will probably make it relatively easy for you to analyze data. However, home-built
microarray setups put out data sets of varying sizes. Arrayers may not spot quite as
uniformly as commercial machines. Standardization is difficult. And running a home-
built setup means you have to find software that supports all the steps of the array
experiment and has the features you need for data analysis.

One of the main challenges in conducting microarray experiments with
noncommercial equipment is that there are a limited number of available tools for
linking expression data with associated sequences and annotations. Constructing
such a database interface can be a real burden for a novice. Proprietary software,
based on proprietary chip formats, is often quite well supported by a database

292

backend specific to the chip, but it isn't always generalizable, or not easily so, to a
variety of image formats and data-set sizes. In the public domain, several projects
are underway to improve this situation for academic researchers, including NCGR's
GeneX and EMBL-EBI's ArrayExpress. The National Human Genome Research
Institute (NHGRI) is currently offering a demonstration version of an array data
management system called ArrayDB (http://genome.nhgri.nih.gov/arraydb/) that
includes both analysis tools and relational database support.[4] ArrayDB will also allow
a community of users to add records to a central database.

[4] It's in alpha release at the time of this writing.

The Pat Brown group at Stanford has a comprehensive listing of microarray
resources on their web site, including instructions for building your own arrayer (for
about 10% of the cost of a commercial setup) and the ArrayMaker software that
controls the printing of arrays. This site is an excellent resource for microarray
beginners.

11.5.3.1 Planning array experiments

A key element in microarray experiments is chip design. This is the aspect that's
often forgotten by users of commercial devices and commercial chips, because one
benefit of those systems is that chip design has been done for you, by an expert,
before you ever think about doing an experiment. Chip design is a process that can
take months.

Even the largest chip can't fit all the proteins in a eukaryotic genome; there may be
hundreds of thousands of different targets. The chip designer has to select subsets of
the genome that are likely to be informative when assayed together. EST data sets
can be helpful in designing microarray primers; while they are quantitatively
uninformative, ESTs do indicate which subsets of genes are likely to be active under
particular conditions and hence are informative for a specific microarray experiment.

In order for microarray results to be clear and unambiguous, each DNA probe in the
array must be sufficiently unique that only one specific target gene can hybridize
with it. Otherwise, the amount of signal detected at each spot will be quantitatively
incorrect.

What this means, in practice, is lots of sequence analysis: finding possible genes of
interest, and selecting and synthesizing appropriate probes. Once the probes are
selected, their sequence, plus available background information for each spot in the
array, must be recorded in a database so that information is accessible when results
are analyzed. Finally, the database must be robust enough to take into account
changing annotations and information in the public sequence databases, so that
incorrect interpretations of results can be avoided.

Some resources for probe and primer design are available on the Web. A "good"
oligonucleotide—one that is useful as a probe or primer for microarrays, PCR, and
other hybridization experiments shouldn't hybridize with itself to form dimers or
hairpins. It should hybridize uniquely with the target sequence you are interested in.
For PCR applications, primers must have an optimal melting temperature and
stability. An excellent web resource for designing PCR primers is the Primer3 web

293

site at the Whitehead Institute; CODEHOP is another primer/probe design application
based on sequence motifs found in the Blocks database.

11.5.3.2 Analyzing scanned microarray images with CrazyQuant

Once the array experiment is complete, you'll find yourself in possession of a lot of
very large TIFF files containing scanned images of your arrays. If you're not using an
integrated analysis package, where do you go from there?

The standard for public-domain microarray analysis tools are the packages
developed at Stanford. One package, ScanAlyze, available for Windows, is the image
analysis tool in this group. ScanAlyze is well regarded and widely used, especially in
academia and features semiautomatic grid definition and multichannel pixel analysis.
It supports TIFF files as well as the Stanford SCN format. It's by far the most
sophisticated of the image-analysis programs discussed here.

A relatively straightforward public-domain program for array-image analysis is
CrazyQuant, a Java application available from the Hood Laboratory at the University
of Washington. CrazyQuant is menu-driven and can load TIFF, JPG, or GIF format
microarray images. CrazyQuant assumes a 2D matrix of regularly spaced spots, and
to begin the analysis process, you need to define a 2D grid that pinpoints the spot
locations. The program then computes relative intensities at each spot and stores
them as integer values. CrazyQuant can quantitate both one- and two-color
(differential) array data. CrazyQuant is extremely simple to install on a Linux
workstation. Download the archive, move it to its own directory, unzip it, and run the
program by entering java CrazyQuant. A sample GIF image is included in the archive
so that you can see how it works.

TIGR also offers a Windows application for microarray image analysis called
SpotFinder. SpotFinder can process the TIFF-format files produced by most
microarray scanners and produce output that is compatible with both TIGR's
ArrayViewer and other microarray analysis software.

11.5.3.3 Visualizing high-dimensional data

Microarray results can be difficult to visualize. Array experiments generally have at
least four dimensions (x-location, y-location, fluorescence intensity, and time).
Straightforward plotting of array images isn't very informative. Tools that help
extract features from higher-dimensional data sets and display these features in a
sensible image format are needed.

TIGR offers a Java application called ArrayViewer. Currently, ArrayViewer's functions
are focused on detecting differentially expressed genes and displaying differential
expression results in a graphical format. ArrayViewer's parameters can be adjusted
to incorporate data from arrays of any size, and it can be configured to allow
straightforward access to underlying gene sequence data and annotation. Several
normalization options are offered. Features for analysis of time series data and other
more complicated data sets aren't yet implemented, but ArrayViewer does meet
most basic array visualization needs.

294

Some general visualization and data-mining packages such as Xgobi, which we
discuss in Chapter 14, can also be used to examine array data.

11.5.3.4 Clustering expression profiles

At the time of this writing, the most popular strategy for analysis of microarray data
is the clustering of expression profiles. An expression profile can be visualized as a
plot that describes the change in expression at one spot on a microarray grid over
the course of the experiment. The course of the experiment changes with the
context, anything from changes in the concentration of nutrients in the medium in
which cells are being grown prior to having their DNA hybridized to the array, to cell
cycle stages.

In this context, what is clustered is essentially the shape of the plot. Different
clustering methods, such as hierarchical clustering or SOMs (self-organizing maps)
may work better in different situations, but the general aim of each of these methods
is the same.[5] If two genes change expression levels in the same way in response to
a change in conditions, it can be assumed that those genes are related. They may
share something as simple as a promoter, or more likely, they are controlled by the
same complex regulatory pathway. Automated clustering of expression profiles looks
for similar symptoms (similarly shaped expression profiles) but doesn't necessarily
point to causes for those changes. That's the job of the scientist analyzing the
results, at least for now.

[5] We discuss clustering approaches in a little more detail in Chapter 14.

The programs Cluster and TreeView, also from Stanford, are Windows-platform tools
for clustering expression profiles. Various algorithms for clustering are implemented,
including SOMs and hierarchical clustering. XCluster, which implements most of the
features of Cluster, is available for Unix platforms. All these programs require a
specific file format (detailed in the manual, which is available online).

11.5.3.5 A note on commercial software for expression analysis

Several commercial software packages, with tools for visualizing complex microarray
data sets, are available. Many of these are specific to particular hardware or array
configurations. Others, such as SpotFire and Silicon Genetics' GeneSpring, are more
universal. These software packages are often rather expensive to license; however,
at this stage of the development of microarray technology, their relative ease of use
may make them worthwhile.

11.6 Proteomics
Proteomics refers to techniques that simultaneously study the entire protein
complement of a cell. While protein purification and separation methods are
constantly improving, and the time-to-completion of protein structures determined
by NMR and x-ray crystallography is decreasing, there is as yet no single way to
rapidly crystallize the entire protein complement of an organism and determine every
structure. Techniques in biochemical characterization, on the other hand, are getting
better and faster. The technological advance in biochemistry that most requires
informatics support is the immobilized-gradient 2D-PAGE process and the

295

subsequent characterization of separated protein products by mass spectrometry.
Microarraying robots have begun to be used to create protein arrays, which can be
used in protein interaction assays, drug discovery, and other applications. However,
protein microarrays are still far from a routine approach.

11.6.1 Experimental Approaches in Proteomics
Knowing when and at what levels genes are being expressed is only the first step in
understanding how the genome determines phenotype. While mRNA levels are
correlated with protein concentration in the cell, proteins are subject to post-
translational modifications that can't be detected with a hybridization experiment.
Experimental tools for determining protein concentration and activity in the cell are
the crucial next step in the process.

Another high-throughput technology that is emerging as a tool in functional
genomics is 2D gel electrophoresis. Gels have long been used in molecular biology to
separate mixtures of components. Depending on the conditions of the experiment
and the type of gel used, different components will migrate through a gel matrix at
different rates. (This same principle makes DNA sequencing possible).

Two-dimensional gel electrophoresis can be used to separate protein mixtures
containing thousands of components. The first dimension of the experiment is
separation of the components of a solution along a pH gradient (isoelectric focusing).
The second dimension is separation of the components orthogonally by molecular
weight. Separation in these two dimensions can resolve even a complicated mixture
of components. Figure 11-5 shows a 2D-PAGE reference map from Arabidopsis
thaliana. The 2D-PAGE experiment separates proteins from a mixed sample so that
individual proteins can be identified. Each spot on the map represents a different
protein. (Image © Swiss Institute of Bioinformatics, Geneva, Switzerland.)

Figure 11-5. A 2D-PAGE reference map from Arabidopsis thaliana

296

While 2D gel electrophoresis is a useful and interesting technology in itself, the
technology did not really come into its own until the development of standardized
immobilized-gradient gels. These gels allow very precise protein separations,
resulting in standardized high density data arrays. They can therefore be subjected
to automated image analysis and quantitation and used for accurate comparative
studies. The other advance that has put 2D gel technology at the forefront of modern
molecular biology methods is the capacity to chemically analyze each spot on the gel
using mass spectrometry. This allows the measurable biochemical phenomenon—the
amount of protein found in a particular spot on the gel—to be directly connected to
the sequence of the protein found at that spot.

11.6.2 Informatics Challenges in 2D-PAGE Analysis
The analysis pathway for 2D-PAGE gel images is essentially quite similar to that for
microarrays. The first step is an image analysis, in which the positions of spots on
the gel are identified and the boundaries between different spots are resolved.
Molecular weight and isoelectric point (PI) for each protein in the gel can be
estimated according to position.

Next, the spots are identified, and sequence information is used to make the
connection between a particular spot and its gene sequence. In microarray
experiments, this step is planned in advance, as the primers or cDNA fragments are
laid down in the original chip design. In proteome analysis, the immobilized proteins

297

can either be sequenced in situ or spots of protein can be physically removed from
the gel, eluted, and analyzed using mass spectrometry methods such as electrospray
ionization-mass spectrometry (ESI-MS) or matrix-assisted laser desorption ionization
mass spectrometry (MALDI).

The essence of mass spectrometry methods is that they can determine the masses of
components in a mixture, starting from a very small sample. Proteins, fragmented by
various chemically specific digestion methods, have characteristic fingerprints
(patterns of peptide masses) that can identify specific proteins and match them with
a gene sequence.

Peptide fingerprints are sufficient to identify proteins only in cases in which the
sequence of a protein is already known and can be found in a database. When full
sequence information isn't available, a second mass spectrometry step can obtain
partial sequence information from each individual peptide that makes up the peptide
fingerprint. The initial peptide fingerprinting process separates the protein into
peptides and characterizes them by mass. Within the mass spectrometer, each
peptide can then be further broken down into ionized fragments. The goal of the
peptide fragmentation step is to produce a ladder of fragments each differing in
length by one amino acid. Because each type of amino acid has a different molecular
weight, the sequence of each peptide can be deduced from the resulting mass
spectrum.

Finally, staining, radiolabeling, fluorescence, or other methods are used to quantitate
each protein spot on the gel. Both in the microarray experiment and the 2D-PAGE
experiment, quantitation is a fairly difficult step. In this step, computer algorithms
can help analyze the amount of signal at each spot and deconvolute complex
patterns of spots.

11.6.3 Tools for Proteomics Analysis
Several public-domain programs for proteomics analysis are available on the Web.
Most of these can be accessed through the excellent proteomics resource at Expert
Protein Analysis System (ExPASy, http://www.expasy.ch/tools/), the excellent
resource maintained by the Swiss Institute of Bioinformatics. ExPASy is linked with
SWISS-PROT, an expert-curated database of protein sequence information, and
TrEMBL, the computer-generated counterpart to SWISS-PROT. Most of its tools are
web-based and tied into these and other protein databases. The Swiss Institute of
Bioinformatics also maintains SWISS-2DPAGE, a database of reference gel maps that
are fully searchable and integrated with other protein information. SWISS-2DPAGE,
like other biological databases, is growing rapidly; however deposition of 2D-PAGE
results into databases isn't, at this time, required for publication, so the database
isn't comprehensive.

The Melanie3 software package, a Windows-based package for 2D-PAGE image
analysis, was developed at ExPASy, although it has since been commercialized. A
Melanie viewer, which allows users who don't own Melanie3 to view Melanie3 data
sets generated by colleagues, is freely distributed by ExPASy.

Here are some other ExPASy proteomics tools:

http://www.expasy.ch/tools/

298

AACompIdent

Allows you to identify proteins by their amino acid composition

AACompSim

Compares a protein's amino acid composition with other proteins in SWISS-
PROT

MultiDent

A multifunction tool that uses PI, molecular weight, mass fingerprints, and
other data to help identify proteins

PeptIdent

Compares experimentally determined mass fingerprints with theoretically
calculated mass fingerprints for all proteins in SWISS-PROT

FindMod

Predicts specific post-translational modifications to proteins based on mass
differences between experimental and computed fingerprints

GlycoMod

Predicts oligosaccharide modifications from mass differences

PeptideMass

Computes a theoretical mass fingerprint for a SWISS-PROT or TrEMBL entry,
or for a user-entered protein sequence

These tools are entirely forms-based and very approachable for the novice user. In
addition, ExPASy provides links to many externally developed tools and web servers.
It is an excellent starting resource for anyone interested in proteomics.

The PROWL database is a relatively new web resource for proteomics. PROWL tools
can be used to search a protein database with peptide fingerprint or partial sequence
information. The PROWL group also provides a suite of software for mass
spectrometry data analysis.

11.6.4 Generalizing the Array Approach
Integration of microarray and 2D-PAGE methods—which provide information about
gene transcription and translation, respectively—with genome sequence data is the
best way currently available to form a picture of whole-genome function. However,
these methods are still fairly new. Although the technology is moving forward by
leaps and bounds, their results aren't yet fully standardized, and consensus software
tools and analysis methods for these types of data are still emerging.

299

Array and 2D-PAGE experiments have elements in common, including the ability to
separate and quantitate components in a mixture and fix particular components
consistently to positions in a grid, and the ability to measure changes in signal at
each position over time. Approaches for analyzing array-formatted biochemical data
are likely to be similar on some level, whether the experiments involve DNA-DNA,
DNA-mRNA, or even protein-protein interactions. Array strategies have recently been
used to conduct a genome-wide survey of protein-protein interactions in yeast, and
other applications of the strategy are, no doubt, in the works. Array methods and
other parallel methods promise to continue to revolutionize biology. However, the
biology community is still in the process of developing standards for reporting and
archiving array data, and it is unlikely that a consensus will be reached before this
book goes to press.

11.7 Biochemical Pathway Databases
Gene and protein expression are only two steps in the translation of genetic code to
phenotype. Once genes are expressed and translated into proteins, their products
participate in complicated biochemical interactions called pathways, as shown in
Figure 11-6 (the image in the figure is © Kyoto Encyclopedia of Genes and
Genomes). It is highly unlikely that one enzyme-catalyzed chemical reaction will
produce a needed product from a material readily available to the organism. Instead,
a complicated series of steps is usually required. Each pathway may supply chemical
precursors to many other pathways, meaning that each protein has relationships not
only to the preceding and following biochemical steps in a single pathway, but
possibly to steps in several pathways. The complicated branchings of metabolic
pathways are far more difficult to represent and search than the linear sequences of
genes and genomes.

Figure 11-6. A complex metabolic pathway

300

11.7.1 Illustration of a Complex Metabolic Pathway
Several web-based services offer access to metabolic pathway information. These
resources are primarily databases of information linked by search tools; at the time
of this writing metabolic simulation tools, such as those we describe in the next
section, have not been fully integrated with databases of known metabolic pathway
information into a central web-based resource.

11.7.2 EC Nomenclature
Enzymes (proteins that catalyze metabolic reactions) can be described using a
standard code called the EC code. The EC nomenclature is a hierarchical naming
scheme that divides enzymes into several major classes. The first class number
refers to the chemistry of the enzyme: oxidoreductase, lyase, hydrolase, transferase,
isomerase, or ligase. The second class number indicates what class of substrate the
enzyme acts on. The third class number, which can be omitted, indicates other
chemical participants in the reaction. Finally, the fourth number narrows the search
to the specific enzyme. Thus, EC number 1.1.1.1 refers to alcohol dehydrogenase,
which is a (1) oxidoreductase acting on the (1) CH-OH group of donors with (1)

301

NADH as acceptor. If you are interested in using most metabolic pathway resources,
it's helpful to become familiar with EC nomenclature. The EC code and hierarchy of
functional definitions can be found online at the IUBMB Biochemical Nomenclature
Committee web site.

11.7.3 WIT and KEGG
The best known metabolic pathway resources on the Web are What is There (WIT,
http://wit.mcs.anl.gov/WIT2/) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.ad.jp/kegg/). WIT is a metabolic pathway
reconstruction resource; that is, the curators of WIT are attempting to reconstruct
complete metabolic pathway models for organisms whose genomes have been
completely sequenced. WIT currently contains metabolic models for 39 organisms.
The WIT models include far more than just metabolism and bioenergetics; they
range from transcription and translation pathways to transmembrane transport to
signal transduction.

WIT can be searched and queried in a number of ways. You can browse the database
beginning at the very top level, a functional overview of the WIT contents, which is
found under the heading General Overview on the main page. Each heading in the
metabolic outline is a clickable link that takes you to increasingly specific levels of
detail about that subset of metabolism. The View Models menu takes you directly to
organism-specific metabolic models.

The General Search function allows you to search all of WIT, or subsets of
organisms. This type of search is based on keywords, using Unix-style regular
expressions to find matches. There is also a similarity search function that allows you
to search all the open reading frames (ORFs) of a selected organism for sequence
pattern matches, using either BLAST or FASTA. Pathway queries require you to
specify the names of metabolites and/or specific EC enzyme codes. Enzyme queries
allow you to specify an enzyme name or EC code, along with location information
such as tissue specificity, cellular compartment specificity, or organelle specificity. In
all except the regular-expression searches, the keywords are drawn from
standardized metabolic vocabularies. WIT searches require some prior knowledge of
these vocabularies when you submit the query. WIT was primarily designed as a tool
to aid its developers in producing metabolic reconstructions, and documentation of
the vocabularies used may not always be sufficient for the novice user. WIT is
relatively text-heavy, although at the highest level of detail, metabolic pathway
diagrams can be displayed.

Another web-based metabolic reconstruction resource is KEGG, which provides its
metabolic overviews as map illustrations, rather than text-only, and can be easier to
use for the visually-oriented user. KEGG also provides listings of EC numbers and
their corresponding enzymes broken down by level, and many helpful links to sites
describing enzyme and ligand nomenclature in detail. The LIGAND database,
associated with KEGG, is a useful resource for identifying small molecules involved in
biochemical pathways. Like WIT, KEGG is searchable by sequence homology,
keyword, and chemical entity; you can also input the LIGAND ID codes of two small
molecules and find all of the possible metabolic pathways connecting them.

11.7.4 PathDB

http://wit.mcs.anl.gov/WIT2/
http://www.genome.ad.jp/kegg/

302

PathDB is another type of metabolic pathway database. While it contains roughly the
same information as KEGG and WIT—identities of compounds and metabolic
proteins, and information about the steps that connect these entities—it handles
information in a far more flexible way than the other metabolic databases. Instead of
limiting searches to arbitrary metabolic pathways and describing pathways with
preconceived images, PathDB allows you to find any set of connected reactions that
link point A to point B, or compound A to compound B.

PathDB contains, in addition to the usual search tools, a pathway visualization
interface that allows you to inspect any selected pathway and display different
representations of the pathway. The PathDB developers plan to incorporate
metabolic simulation into the user interface as well, although those features aren't
available at the time of this writing.

The PathDB browser is a platform-independent tool you can use on any machine with
a Java Runtime Environment (JRE) Version 1.1.4 or later installed. Both Sun and
IBM supply a JRE for Linux systems. Once the JRE is installed, you can run the
PathDB installer, making sure that the installer uses the correct version of the JRE
(for this to work, you may need to add the JRE binary directory to your path). Let
the installer create a link to PathDB in your home directory. To run the program,
enter PathDB. You may be prompted to specify the correct Java virtual machine or
exit; use the same Java pathway you did when you installed the software.

To sample how PathDB works, submit a simple query that will assure you get results
the first time (such as "All Catalysts with EC Number like 1.1.1.1," which brings up a
list of alcohol dehydrogenases). You can also follow the tutorials available from the
PathDB web site.

11.8 Modeling Kinetics and Physiology
A new "omics" buzzword that has begun to crop up in the literature rather recently is
"metabolomics." Researchers have begun to recognize the need to exhaustively track
the availability and concentration of small molecules—everything from electrolytes to
metabolic intermediates to enzyme cofactors—in biological systems. Small molecules
are extremely important in biochemistry, playing roles in everything from signal
transduction to bioenergetics to regulation. The populations of small molecules that
interact with proteins in the cell will continue to be a key topic of research as
biologists attempt to assemble the big picture of cellular function and physiology.

Mathematical modeling of biochemical kinetics and physiology is a complicated topic
that is largely beyond the scope of this book. Mathematical models are generally
system-specific, and to develop them requires a detailed understanding of a
biological system and a facility with differential equations. However, a few groups
have begun to develop context-independent software for developing biochemical and
physiological models. Some of the best known of these are Gepasi, a system for
biochemical modeling; XPP, a more general package for dynamical simulation; and
the Virtual Cell portal.

The essential principle behind biochemical and physiological modeling is that changes
in biochemical systems can be modeled in terms of chemical concentrations and
associated rate equations. Each "pool" of biochemical reagent in a system has an

303

associated rate of formation and rate of breakdown, and the model is capable of
predicting how the system will behave over time under various starting conditions. A
model of metabolism may consist of dozens of reagents, each being formed and
consumed by multiple reactions. Models that accurately simulate the behavior of a
complex biochemical pathway aren't trivially developed, but once created, they can
predict the effect of perturbations to the system and help researchers develop new
hypotheses.

If you're coming from a biological sciences background, you are probably familiar
with the Michaelis-Menten model for describing enzyme kinetics. Biochemical
modeling extends this relatively simple mathematical model of a single enzyme-
catalyzed reaction to encompass multiple reactions that may feed back upon each
other in complex ways. Physiological models also involve multiple compartments with
barriers through which only some components can diffuse or be transported.
However, the underlying principles are similar, no matter how complex the model.

11.8.1 Modeling Kinetics with Gepasi
Gepasi (http://www.gepasi.org/) is a user-friendly biochemical kinetics simulator for
Windows/NT that can model systems of up to 45 metabolites and 45 rate equations.
The Gepasi interface includes interactive tools for creating a new metabolic model:
entering chemical reactions, adding metabolites that may be effectors or inhibitors of
the reactions, defining reaction kinetics, setting metabolite concentrations, and other
key steps in model development. You can apply Gepasi's predefined reaction types to
your model or define your own reaction types. Gepasi automatically checks on mass
conservation relations that need to be accounted for in the simulation. Gepasi has
numerous options for running simulations over various time courses and testing the
results of changing variable values over a user-defined range. Gepasi can also
optimize metabolic models used in metabolic engineering and fit experimental data
to metabolic models.

At the time of this writing, versions of Gepasi for platforms other than Windows/NT
are in development.

11.8.2 XPP
XPP (http://www.math.pitt.edu/~bard/xpp/xpp.html) is a dynamical systems
simulation tool that is available for both Windows/NT and Linux. While it lacks some
of the user-friendly features of Gepasi, it has been used effectively to model
biochemical processes ranging from biochemical reactions to cell cycles and circadian
rhythms. XPP compiles easily on any Linux system with a simple make command;
just download the archive, move it into a directory of its own, extract it, then
compile the program. Documentation, as well as example files for various
simulations, are included with the XPP distribution.

11.8.3 Using the Virtual Cell Portal
The Virtual Cell portal at the National Resource for Cell Analysis and Modeling
(NRCAM, http://www.nrcam.uchc.edu) is the first web-based resource for modeling
of cellular processes. It allows you to model cells with an arbitrary number of
compartments and complex physiology. A tutorial available at the Virtual Cell site

http://www.nrcam.uchc.edu

304

walks the first-time user through the process of developing a physiology model for a
cell, choosing a cell geometry, and setting up and running a simulation. The cell
physiology model includes not only a compartmentation scheme for the cell, which
can be created using simple drawing tools, but the addition of specific types of ionic
species and membrane transporters to the cell model.

The Virtual Cell is a Java applet, which is fully supported for Macintosh and Windows
users. In order to use the Virtual Cell portal on a Linux workstation, you need to
download the Java plug-in for Netscape (available from http://www.blackdown.org)
and install it in your ~/.netscape directory. Once the plug-in is installed, you can
follow the "MacIntosh Users Run the Virtual Cell" link on the main page, even if
you're running the VCell Applet on a Linux workstation, and you can try out most
features of the portal. At the time of this writing, Unix users aren't explicitly
supported at the Virtual Cell portal, and while correct functionality seems to be
available when the Blackdown Java applet is used, it might be wise for serious users
of the VCell tools to compare results for some test cases on a Linux workstation and
another machine.

11.9 Summary
We've compiled a quick-reference table of genomics and proteomics tools and
techniques (Table 11-1).

Table 11-1. Genomics and Proteomics Tools and Techniques
What you do Why you do it What you use to do it

Online genome
resources

To find information about the
location and function of particular
genes in a genome

NCBI tools, TIGR tools,
EnsEMBL, and genome-
specific databases

Basecalling
To convert fluorescence intensities
from the sequencing experiment
into four-letter sequence code

Phred

Genome mapping
and assembly

To organize the sequences of short
fragments of raw DNA sequence
data into a coherent whole

Phrap, Staden package

Genome
annotation

To connect functional information
about the genome to specific
sequence locations

MAGPIE

Genome
comparison

To identify components of genome
structure that differentiate one
organism from another

PipMaker, MUMmer

Microarray image
analysis

To identify and quantitate spots in
raw microarray data

CrazyQuant, SpotFinder,
ArrayViewer

Clustering
analysis of
microarray data

To identify genes that appear to be
expressed as linked groups Cluster, TreeView

2D-PAGE analysis To analyze, visualize, andquantitate 2D-PAGE images Melanie3, Melanie Viewer
Proteomics
analysis

To analyze mass spectrometry
results and identify proteins

ExPASy tools,
ProteinProspector, PROWL

http://www.blackdown.org

305

Metabolic
pathway tools

To search metabolic pathways and
discover functional relationships; to
reconstruct metabolic pathways

PATH-DB, WIT, KEGG

Metabolic
andcellular
simulation

To model metabolic and cellular
processes based on known
properties and inference

Gepasi, XPP, Virtual Cell

Part IV: Databases and Visualization
Chapter 12

Chapter 13

Chapter 14

Chapter 12. Automating Data Analysis
with Perl
As we've seen in previous chapters, a vast assortment of software tools exists for
bioinformatics. Even though it's likely that someone has already written what you
need, you will still encounter many situations in which the best solution is to do it
yourself. In bioinformatics, that often means writing programs that sift through
mountains of data to extract just the information you require. Perl, the Practical
Extraction and Reporting Language, is ideally suited to this task.

12.1 Why Perl?
There are a lot of programming languages out there. In our survey of bioinformatics
software, we have already seen programs written in Java, C, and FORTRAN. So, why
use Perl? The answer is efficiency.[1] Biological data is stored in enormous databases
and text files. Sorting through and analyzing this data by hand (and it can be done)
would take far too long, so the smart scientist writes computer tools to automate the
process. Perl, with its highly developed capacity to detect patterns in data, and
especially strings of text, is the most obvious choice. The next obvious choice would
probably be Python. Python, the less well known of the two, is a fully object-oriented
scripting language introduced by Guido van Rossum in 1988. Python has some
outstanding contributed code, including a mature library for numerical methods,
tools for building graphical user interfaces quickly and easily, and even a library of
functions for structural biology. At the end of the day, however, it's the wealth of
existing Perl code for bioinformatics, the smooth integration of that code onto Unix-
based systems, cross-platform portability, and an incredibly enthusiastic user
community that makes Perl our favorite scripting language for bioinformatics
applications.

[1] Efficiency from the programmer's point of view, that is. It takes far less programming time
to extract data with Perl than with C or with Java.

306

Perl has a flexible syntax, or grammar, so if you are familiar with programming in
other languages such as C or BASIC, it is easy to write Perl code in a C-like or
BASIC-like dialect. Perl also takes care of much of the dirty work involved in
programming, such as memory allocation, so you can concentrate on solving the
problem at hand. It's often the case that programming problems requiring many
lines of code in C or Java may be solved in just a few lines of Perl.

Many excellent books have been written about learning and using Perl, so this single
chapter obviously can't cover everything you will ever need to know about the
language. Perl has a mountain of features, and it's unrealistic to assume you can
master it without a serious commitment to learning the art of computer
programming. Our aim in this chapter isn't to teach you how to program in Perl, but
rather to show you how Perl can help you solve certain problems in bioinformatics.
We will take you through some examples that are most immediately useful in real
bioinformatics research, such as reading datafiles, searching for character strings,
performing back-of-the-envelope calculations, and reporting findings to the user.
And we'll explain how our sample programs work. The rest is up to you. The ability
to program in any language—but especially in Perl, Python, or Java—is an important
skill for any bioinformatician to have. We strongly suggest you take a programming
class or obtain one of the books on our list of recommended reading and start from
the beginning. You won't regret it.

12.1.1 Where Do I Get Perl?
Perl is available for a variety of operating systems, including Windows and Mac OS,
as well as Linux and other flavors of Unix. It's distributed under an open source
license, which means that it's essentially free. To obtain Perl from the Web, go to
http://www.perl.com/pub/language/info/software.html and follow the instructions for
downloading and installing it on your system.

12.2 Perl Basics
Once you've installed Perl, or confirmed with your system administrator that it's
already installed on your system, you're ready to begin writing your first program.
Writing and executing a Perl program can be broken into several steps: writing the
program (or script) and saving it in a file, running the program, and reading the
output.

12.2.1 Hello World
A Perl program is a text file that contains instructions written in the Perl language.
The classic first program in Perl (and many other languages) is called "Hello, World!"
It's written like this:
#!/usr/bin/perl -w
Say hello
print "Hello, World!\n";

"Hello, World!" is a short program, but it's still complete. The first line is called the
shebang line and tells the computer that this is a Perl program. All Perl programs
running on Unix begin with this line.[2] It's a special kind of comment to the Unix shell

http://www.perl.com/pub/language/info/software.html

307

that tells it where to find Perl, and also instructs it to look for optional arguments. In
our version of "Hello World!" we've included the optional argument -w at the end of
the line. This argument tells Perl to give extra warning messages if you do something
potentially dangerous in your program. It's a good idea to always develop your
programs under -w.

[2] Strictly speaking, the shebang line isn't necessary on Windows or Macintosh; neither of
those systems has a usr/bin/perl. It's good programming form to always include the line,
however, since it's the best place to indicate your optional arguments in Perl. On other
platforms, you can run the program by invoking the Perl interpreter explicitly, as in perl
hello.pl.

The second line starts with a # sign. The # tells Perl that the line of text that follows
is a comment, not part of the executable code. Comments are how humans tell each
other what each part of the program is intended to do. Make a habit of including
comments in your code. That way you and other people can add to your code, debug
it successfully, and even more importantly, remember what it was supposed to do in
the first place.

The third line calls the print function with a single argument that consists of a text
string. At the end of the text string, there is a \n, which tells the computer to move
to a new line after executing the print statement. The print statement ends with a
semicolon, as do most statements in Perl.

To try this little program yourself, you can open a text editor such as vi, Emacs, or
pico, and type the lines in. When you've finished entering the program, name the file
hello.pl and save it in your directory of choice. While you're learning, you might
consider creating a new directory (using the mkdir command, which we covered in
Chapter 4) called Perl in your home directory. That way you'll always know where to
look for your Perl programs.

Now make the file executable using the command:
% chmod +x hello.pl

(If you need a refresher on chmod, this would be a good time to review the section
on changing file permissions in Chapter 4.) To run the program, type:
% hello.pl

Because of the shebang line in our program, this command invokes the Perl
interpreter, which reads the rest of the file and then translates your Perl source code
into machine code the computer can execute. In this case you'll notice that Hello,
World! appears on your computer screen, and then the cursor advances to a new
line. You've now written and run your first Perl program!

12.2.2 A Bioinformatics Example
One of the strengths of Perl—and the reason that bioinformaticians love it—is that
with a few lines of code, you can automate a tedious task such as searching for a
nucleotide string contained in a block of sequence data. To do this, you need a
slightly more complex Perl program that might look like this:

308

#!/usr/bin/perl -w
Look for nucleotide string in sequence data

my $target = "ACCCTG";
my $search_string =

'CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACA'.
'CATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTT'.
'ACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAAC';

my @matches;

Try to find a match in letters 1-6 of $search_string, then look at
letters 2-7,
and so on. Record the starting offset of each match.

foreach my $i (0..length $search_string){
if($target eq substr($search_string, $i, length $target)){

push @matches, $i;
}

}

Make @matches into a comma-separated list for printing
print "My matches occurred at the following offsets: @matches.\n";

print "done\n";

This program is also short and simple, but it's still quite powerful. It searches for the
target string "ACCCTG" in a sequence of data and keeps track of the starting location
of each match. The program demonstrates variables and loops, which are two basic
programming constructs you need to understand to make sense of what is going on.

12.2.3 Variables
A variable is a name that is associated with a data value, such as a string or a
number. It is common to say that a variable stores or contains a value. Variables
allow you to store and manipulate data in your programs; they are called variables
because the values they represent can change throughout the life of a program.

Our sequence matching program declares four variables: $target , $search_string,
@matches, and $i. The $ and @ characters indicate the kind of variable each one is.
Perl has three kinds of variables built into the language: scalars, arrays, and hashes.

Unlike other programming languages, Perl doesn't require formal declaration of
variables; they simply exist upon their first use whether you explicitly declare them
or not. You may declare your variables, if you'd like, by using either my or our in
front of the variable name. When you declare a variable, you give it a name. A
variable name must follow two main rules: it must start with a letter or an
underscore (the $ and @ characters aren't considered part of the name), and it must
consist of letters, digits, and underscores. The best names are ones that clearly,
concisely, and accurately describe the variable's role in the program. For example, it
is easier to guess the role of a variable if it is named $target or $sequence, than if it
were called $icxl.

mailto:@matches.\n";

309

12.2.3.1 Scalars

A scalar variable contains a single piece of data that is either a number or a string.
The $ character indicates that a variable is scalar. The first two variables declared in
our program are scalar variables:
my $target = "ACCCTG";
my $search_string =

"CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACA".
"CATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTT".
"ACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAAC";

In this case, "ACCCTG" is the target string we are seeking, and
"CCACACCACACCCACAC..." is the sequence data in which we're hoping to find it.

In a scalar variable, a number can be either an integer (0, 1, 2, 3, etc.) or a real
number (a number that contains a fractional portion, such as 5.6). A string is a
chunk of text that's surrounded by quotes. For example:
"I am a string."
'I, too, am a string'

One of Perl's special features is that it has a number of built-in facilities for
manipulating strings, which comes in handy when working with the flat text files
common to bioinformatics. We cover flat text files and their more structured
relatives, relational databases, in detail in Chapter 13.

12.2.3.2 Arrays

An array is an ordered list of data. In our sequence matching program, @matches is
an array variable used to store the starting locations of all the matches. Each
element stored in an array can be accessed by its position in the list, which is
represented as a number. In Perl, array variables are given an @ prefix. For
example, the following statement declares an array of numbers:
@a = (1, "4", 9);

This statement declares an array of strings:
@names = ("T. Herman", "N. Aeschylus", "H. Ulysses", "Standish");

And this statement declares an array with both:
@mix = ("Caesar Augustus", "Tiberius", 18, "Caligula", "Claudius");

Note the syntax in the declarations: each element in the array is separated from its
neighbors by a comma, each of the strings is quoted, and (unlike American English)
the comma appears outside of the quotes.

Because an array is an ordered set of information, you can retrieve each element in
an array according to its number. The individual elements in an array are written as

310

$this_array[i], where i is the index of the array element being addressed. Note that i
can be either a bare number (such as 21), or a numeric scalar variable (such as $n)
that contains a bare number. Here is a Perl statement that uses the print operator to
display the second number in @a and the third name in @names on the screen:
print "second number: $a[1]\n third name: $names[2]\n";

You may be wondering why the element numbers here are one less than what you
might think they should be. The reason is that positions in Perl arrays are numbered
starting from zero. That is, the first element in an array is numbered 0, the second
element is numbered 1, and so on. That's why, in the previous example, the second
element in @a is addressed as $a[1]. This is an important detail to remember;
mistakes in addressing arrays due to missing that crucial zero element are easy to
make.

12.2.3.3 Hashes

A hash is also known as an associative array because it associates a name (or key,
as it's called in Perl) with each piece of data (or value) stored in it. A real-world
example of a hash is a telephone book, in which you look up a person's name in
order to find her telephone number. Our sequence matching program doesn't use
any hashes, but they can be quite handy in bioinformatics programs, as you'll see in
a later example. Perl uses the % prefix to indicate hash variables (e.g.,
%sequences). There are a number of ways to declare a hash and its contents as a
list of key/value pairs. Here is the syntax for one declaration style:
%hash = (

key1 => "value1",
key2 => "value2", ...
last_key => "last_value");

A value can then be retrieved from this hash using the corresponding key, as
follows:
$value = $hash{"key2"};

For example, you can declare a hash that relates each three-letter amino acid code
to its one-letter symbol:
my %three_to_one = (

ALA => A, CYS => C, ASP => D, GLU => E,
PHE => F, GLY => G, HIS => H, ILE => I,
LYS => K, LEU => L, MET => M, ASN => N,
PRO => P, GLN => Q, ARG => R, SER => S,
THR => T, VAL => V, TRP => W, TYR => Y

);

The hash entry with the one-letter code for arginine can then be displayed using the
following statement:
print "The one-letter code for ARG is $three_to_one{ARG}\n";

311

Because there are many popular sequence databases, another place where hashes
can be immediately useful is in keeping track of which sequence ID in one database
corresponds to a sequence ID in the next. In the following example, we define a
hash in which each of the keys is a GenBank identifier (GI) number of a particular
enzyme, and each value is the corresponding SWISS-PROT identifier of the same
enzyme. Using this hash, a program can take the more cryptic GI number and
automatically find the associated SWISS-PROT ID:
#!/usr/bin/perl -w
define the hash relating GI numbers to SWISSPROT IDs
%sods = (

g134606 => "SODC_DROME",
g134611 => "SODC_HUMAN",
g464769 => "SODC_CAEEL",
g1711426 => "SODC_ECOLI");

retrieve a value from %sods
$genbank_id = "g134611";
$swissprot_id = $sods{$genbank_id};
print "$genbank_id is the same as $swissprot_id\n";

If you save the previous script to a file, make the file executable, and run it, you
should see:
g134611 is the same as SODC_HUMAN

In the first part of this script, you are declaring the hash relating GenBank IDs to
SWISS-PROT IDs. In the second part, you access the information stored in that
hash. The first step is to assign one of the GenBank IDs to the variable $genbank_id.
Then you can retrieve the SWISS-PROT ID that %sods has associated with the string
in $genbank_id, and store the SWISS-PROT ID in the variable $swissprot_id. Finally,
print the values of the two scalar variables. This example is obviously rather
contrived, but it should give you an idea of how useful hashes can be in
bioinformatics programs.

12.2.4 Loops
Now that we've talked about scalar, array, and hash variables in Perl, let's return to
our sequence matching program and talk about the other main programming
construct it employs. A loop is a programming device that repeatedly executes a
specific set of commands until a particular condition is reached. Our program uses a
foreach loop to iterate through the search string:
foreach my $i (0..length $search_string){

if($target eq substr($search_string, $i, length $target)){
push @matches, $i;

}
}

The first time through this loop, Perl starts at 0 and looks at the first six-letter
combination in the search string, compares it to the target string, and, if there is a
match, records it in @matches. The second cycle of the loop looks at letters 2-7, the
third looks at letters 3 -8, and so on. Perl stops executing this sequence when it

mailto:@matches.

312

reaches the end of the search string. At this point, the loop is done, and the program
moves on to the next section, where it prints the results. Don't worry if you don't
understand all the code in the loop; all that's important right now is that you have a
general understanding of what the code is doing.

12.2.5 Subroutines
Although we don't use them in any of our example programs, the use of subroutines
in programs is worth mentioning. All modern programming languages provide a way
to bundle up a set of statements into a subroutine so that they can be invoked
concisely and repeatedly. In Perl, you can create a subroutine with the sub
declaration:
sub greet {

my ($name) = shift;
print "Hello, $name!\n";

}

Once this greet subroutine has been declared, you can invoke it as follows:
greet("world"); # Prints "Hello, world!"
greet("Per"); # Prints "Hello, Per!"

Here, "world" and "Per" are arguments—values passed into the subroutine, where
they are then stored in $name. Our greet subroutine just prints a single line and
then returns. Usually, subroutines do something a bit more complicated, possibly
returning a value:
$length = calculate_length($sequence);

This sets $length to whatever the calculate_length() subroutine returns when
provided with the single argument $sequence. When a subroutine is used for its
return value, it's often called a function.

12.3 Pattern Matching and Regular Expressions
A major feature of Perl is its pattern matching, and particularly its use of regular
expressions. A regular expression (or regex in the Perl vernacular) is a pattern that
can be matched against a string of data. We first encountered regular expressions in
our discussion of the Unix command grep, back in Chapter 5. grep, as you may
recall, searches for occurrences of patterns in files. When you tell grep to search for
a pattern, you describe what you're looking for in terms of a regular expression. As
you know, much of bioinformatics is about searching for patterns in data.

Let's look at a Perl example. Say you have a string, such as a DNA sequence, and
you want to make sure that there are no illegal characters in it. You can use a
regular expression to test for illegal characters as follows:
#!/usr/bin/perl
check for non-DNA characters

313

my $string =
"CCACACCACACCCACACaCCCaCaCATCACACCACACACCACACTACACCCA*CACACACA";
if($string =~ m/([^ATCG])/i) {

print "Warning! Found: $1 in the string";
}

This program contains the regular expression [^ATCG]. Translated into English, the
regular expression says "look for characters in $string that don't match A, T, C, or
G." (The i at the end of the statement tells Perl to match case insensitively; that is,
to pay no attention to case. Perl's default is to treat A differently from a.) If Perl
encounters something other than the declared pattern, the program prints out the
offending character. The output of this program is:
Warning! Found * in the string

If instead you want to search for a particular combination of letters, like "CAT", you
can change the regular expression to read CAT:
#!/usr/bin/perl
check for CATs
my $string =

"CCACACCACACCCACACaCCCaCaCATCACACCACACACCACACTACACCCA*CACACACA";
if($string =~ m/CAT/i){

print "Meow.";
}

The output of this modified program is:
Meow.

12.4 Parsing BLAST Output Using Perl
Now that you know enough about how Perl is written to understand these simple
programs, let's apply it to one of the most common problems in bioinformatics:
parsing BLAST output. As you already know, the result of a BLAST search is often a
multimegabyte file full of raw data. The results of several searches can quickly
become overwhelming. But by writing a fairly simple program in Perl, you can
automate the process of looking for a single string or multiple strings in your data.

Consider the following block of data:
. . .
gb|AC005288.1|AC005288 Homo sapiens chromosome 17, clone hC... 268
2e-68
gb|AC008812.7|AC008812 Homo sapiens chromosome 19 clone CTD... 264
3e-67
gb|AC009123.6|AC009123 Homo sapiens chromosome 16 clone RP1... 262
1e-66
emb|AL137073.13|AL137073 Human DNA sequence from clone RP11... 260
5e-66
gb|AC020904.6|AC020904 Homo sapiens chromosome 19 clone CTB... 248
2e-62

314

>gb|AC007421.12|AC007421 Homo sapiens chromosome 17, clone
hRPC.1030_O_14,
complete sequence
Query: 3407
accgtcataaagtcaaacaattgtaacttgaaccatcttttaactcaggtactgtgtata 3466

||
Sbjct: 1366
accgtcataaagtcaaacaattgtaacttgaaccatcttttaactcaggtactgtgtata 1425
Query: 3467
tacttacttctccccctcctctgttgctgcagatccgtgggcgtgagcgcttcgagatgt 3526

||
Sbjct: 1426
tacttacttctccccctcctctgttgctgcagatccgtgggcgtgagcgcttcgagatgt 1485
Query: 3527
tccgagagctgaatgaggccttggaactcaaggatgcccaggctgggaaggagccagggg 3586

||
Sbjct: 1486
tccgagagctgaatgaggccttggaactcaaggatgcccaggctgggaaggagccagggg 1545
Query: 3587
ggagcagggctcactccaggtgagtgacctcagccccttcctggccctactcccctgcct 3646

||
Sbjct: 1546
ggagcagggctcactccaggtgagtgacctcagccccttcctggccctactcccctgcct 1605
Query: 3647
tcctaggttggaaagccataggattccattctcatcctgccttcatggtcaaaggcagct 3706
. . .

This is only a small portion of what you might find in a report from a BLAST search.
(This is actual data from a BLAST report. The entire file, blast.dat, is too large to
reproduce here.) The first six lines of this sample contain information about the
BLAST search, as well as other "noise" that's of no importance to the search. The
next 13 lines, and the ones that follow it in the actual report, contain the data to
analyze. You want the Perl program to look at both the "Query" and "Sbjct" lines in
this BLAST report and find the number of occurrences of the following substrings:

· 'gtccca'
· 'gcaatg'
· 'cagct'
· 'tcggga'
· Missing data (represented by dashes in the nucleotide sequence strings)

At the same time, you want the program to ignore irrelevant material such as
information about the search and other noise. The program should then generate a
report file called report.txt that describes the findings for these strings.

In this program you need to create two very long scalar variables to represent each
sequence for searching. Let's call them $query_src, and $sbjct_src. In any BLAST
output, you'll notice that sometimes the "Sbjct" and "Query" lines aren't contiguous;
that is, there are gaps in the data. From a programming perspective, the fact that

315

the gaps exist isn't important; you simply want to read the nucleotides into your
scalars consecutively. Here is a sample portion of BLAST data:
Query: 1165 gagcccaggagttcaagaccagcctgggtaacatgatgaaacctcgtctctac 1217

|||| |||||||| ||||||||||||| |||| | ||||||| ||||||||
Sbjct: 11895 gagctcaggagtttgagaccagcctggggaacacggtgaaaccctgtctctac
11843
Query: 1170 caggagttcaagaccagcctg 1190

|||||||||||||||||||||
Sbjct: 69962 caggagttcaagaccagcctg 69942
Query: 1106 tggtggctcacacctgcaatcccagcact 1134

||||||||||| |||| ||||||||||||
Sbjct: 77363 tggtggctcacgcctgtaatcccagcact 77335

In spite of the fact that the line numbers aren't contiguous, the sequence for "Query"
starts with 'gagccca' and still ends with 'agcact', and will be 103 (53 + 21 + 29)
characters long. As you'll see shortly, the program is designed to ignore the gaps
(and the line numbers) and input the data properly. Frequent BLAST users may also
notice that in a full BLAST report, each sequence is grouped by E-values. We are
ignoring that (usually) important fact in the program.

The Perl program used to search for the five substrings can be broken down into
three parts:

· Inputting the data and preparing it for analysis
· Searching the data and looking for the patterns
· Compiling the results and storing them in report.txt

Let's go through the program step by step. Here are the first few lines:
#!/usr/bin/perl
Search through a large datafile, looking for particular sequences

use strict;

my $REPORT_FILE = "report.txt";
my $blast_file = $ARGV[0] || 'blast.dat';

unless (-e $blast_file) {
die "$0: ERROR: missing file: $blast_file";

}

This code makes sure that the data is in good order. Since you'll be reading large
amounts of data into the variables, tell Perl to tighten up its rules with the line use
strict;. This forces you to be more explicit about how you want Perl to do things. use
strict is particularly useful when developing large programs or programs you want to
modify and reuse. Go on to declare some variables, and in the last few lines, tell Perl
to make sure that data actually exists in the input file blast.dat.

In the next block of code, the program reads the sequences into variables:
First, slurp all the Query sequences into one scalar. Same for the
Sbjct sequences.

316

my ($query_src, $sbjct_src);

Open the blast datafile and end program (die) if we can't find it
open (IN, $blast_file) or die "$0: ERROR: $blast_file: $!";

Go through the blast file line by line, concatenating all the Query
and
Sbjct sequences.
while (my $line = <IN>) {

chomp $line;
print "Processing line $.\n";

In this section you read all the "Query" sequences into one scalar variable, and the
"Sbjct" sequences into another. The program then opens the file for reading with:
open (IN, $blast_file) or die "$0: ERROR: $blast_file: $!";

or prints an error message if for some reason it can't find the file. Next, the program
goes through the file line by line, removing the line-break characters with chomp
$line;. And finally, with a print function, you ask the program to display the current
row as it reads in the data.

Now that you have the data in memory, you need to sort through it and extract the
material you want. Remember that the datafile included a lot of superfluous material
you want to ignore. To do that, instruct Perl to consider only those lines that begin
with Query or Sbjct. Now Query and Sbjct, in addition to having the desired
sequence data, also have line numbers of varying length you don't want. In order to
read the sequence data correctly, you must design the program in such a way that
you skip over line numbers no matter how many characters they have, and always
land on the first nucleotide. You'll notice in this line of data:
Query: 1165 gagcccaggagttcaagaccagcctgggtaacatgatgaaacctcgtctctac 1217

that there is a space between Query, the beginning line number, the sequence data,
and the ending line number. Since this happens to be true for all the query and
subject lines, it becomes the key to how to read the data correctly. To be sure you
get only what you want, split all the query and subject data into a four column array
called @words. That task is accomplished by the following lines of code:

my @words = split /\s+/, $line;
if ($line =~ /^Query/) {

$query_src .= $words[2];
} elsif ($line =~ /^Sbjct/) {

$sbjct_src .= $words[2];
}

}

We've now read the blast file, so we can close it.
close IN;

Once you've read the data into @words, you then instruct the program to take only
the data from column two of @words (which is filled only with nucleotide sequence
data) and store it in the variables $query_src and $sbjct_src. The program then

mailto:@words.

317

closes the file and moves to a new line. You now have just the data you want, stored
in a form you can use.

The next part of the program performs the analysis:
Now, look for these given sequences...
my @patterns = ('gtccca', 'gcaatg', 'cagct', 'tcggga', '-');

...and when we find them, store them in these hashes
my (%query_counts, %sbjct_counts);

Search and store the sequences
foreach my $pattern (@patterns) {

while ($query_src =~ /$pattern/g) {
$query_counts{ $pattern }++;

}
while ($sbjct_src =~ /$pattern/g) {

$sbjct_counts{ $pattern }++;
}

}

The program sets up a loop that runs five times; once for each search string or
pattern. Within each iteration of the outer foreach loop, the program runs inner while
loops that advance counters each time they find a pattern match. The results are
stored in separate hashes called %query_counts and %sbjct_counts.

Here is the last section of the program, which produces the output:
Create an empty report file
open (OUT, ">$REPORT_FILE") or die "$0: ERROR: Can't write
$REPORT_FILE";

Print the header of the report file, including
the current date and time
print OUT "Sequence Report\n",

"Run by O'Reilly on ", scalar localtime, "\n",
"\nNOTE: In the following reports, a dash (-) represents\n",
" missing data in the chromosomal sequence\n\n",
"Total length of 'Query' sequence: ",
length $query_src, " characters\n", "Results for 'Query':\n";

Print the Query matches
foreach my $key (sort @patterns) {

print OUT "\t'$key' seen $query_counts{$key}\n";
}

print OUT "\nTotal length of 'Sbjct' sequence: ",
length $sbjct_src, " characters\n", "Results for 'Sbjct':\n";

Print the Sbjct matches
foreach my $key (sort @patterns) {

print OUT "\t'$key' seen $sbjct_counts{$key}\n";
}

close OUT;

318

__END__

This code compiles and formats the results and dumps them into a file called
report.txt. If you open report.text you see:
Sequence Report
Run by O'Reilly on Tue Jan 9 15:52:48 2001

NOTE: In the following reports, a dash (-) represents
missing data in the chromosomal sequence

Total length of 'Query' sequence: 1115 characters
Results for 'Query':

'-' seen 7
'cagct' seen 11
'gcaatg' seen 1
'gtccca' seen 6
'tcggga' seen 1

Total length of 'Sbjct' sequence: 5845 characters
Results for 'Sbjct':

'-' seen 12
'cagct' seen 2
'gcaatg' seen 6
'gtccca' seen 1
'tcggga' seen 6

In this example the results were sent to a file. You can just as easily ask Perl to
generate an HTML-coded file you can view with your web browser. Or you can make
the process interactive and use Perl to create a CGI script that generates a web form
to analyze the data and give you back your results.

We've only scratched the surface in terms of what this sort of program can do. You
can easily modify it to look for more general patterns in the data or more specific
ones. For example, you might search for `tcggga' and `gcaatg', but only count them
if they are connected by `cagct'. You also might search only for breaks in the data.
And after all the searches are complete, you might use Perl to automatically store all
the results in a database.

If you're feeling a little confused by all this, don't panic. We aren't expecting you to
understand all the code we've shown you. As we said at the beginning of the
chapter, the purpose of the code isn't to teach you to program in Perl, but to show
you how Perl works, and also to show you that programming isn't really all that
difficult. If you have what it takes to design an experiment, then you have what it
takes to program in Perl or any other language.

12.5 Applying Perl to Bioinformatics
The good news is the more you practice programming, the more you learn. And the
more you learn, the more you can do. Programming in Perl is all about analyzing
data and building tools. As we've said before, biological data is proliferating at an
astounding rate. The only chance biologists have of keeping up with the job of

319

analyzing it is by developing libraries of reusable software tools. In Perl, there are a
huge number of reusable functions available for use in your programs. Rather than
being wrapped in a complete program, a group of related functions are packaged as
a module. In your programs, you can use various modules to access the functions
they support. There are Perl modules for other scientific disciplines, as well as
games, graphics programming, video, artificial intelligence, statistics, and music. And
they're all free.

To distinguish them from other Perl files, modules have a .pm suffix. To use
functions from a module (say, CGI.pm) in your Perl programs, include the following
line after the shebang line:
use CGI;

The primary source of all modules is the Comprehensive Perl Archive Network, or
CPAN. CPAN (http://www.cpan.org) is a collection of sites located around the world,
each of which mirrors the contents of the main CPAN site in Finland. To find the
CPAN site nearest you, check the Perl web site (http://www.perl.com).

Because there are so many modules available, before you sit down to write a new
function, it is worth your time to check the CPAN archive to see if anyone has
already written it for you. In this section, we briefly describe some Perl modules that
are particularly useful for solving common problems in bioinformatics. This list is by
no means comprehensive; you should keep an eye on CPAN for current
developments.

12.5.1 Bioperl
The Bioperl Project (along with its siblings, Biopython, BioJava, and Bioxml) is
dedicated to the creation of an open source library of modules for bioinformatics
research. The general idea is that common items in bioinformatics (such as
sequences and sequence alignments) are represented as objects in Bioperl. Thus, if
you use Bioperl, instead of having to constantly rewrite programs that read and write
sequence files, you simply call the appropriate functions from Bio::SeqIO, and dump
the resulting sequence data into a sequence object.

Bioperl isn't limited to storing sequences: it currently contains modules for
generating and storing sequence alignments, managing annotation data, parsing
output from the sequence-database search programs BLAST and HMMer, and has
other modules on the way. In addition to the core Bioperl distribution, the
ScriptCentral script repository at the Bioperl web site (http://www.bioperl.org) hosts
a collection of biology-related scripts. To learn more about downloading, installing,
and using Bioperl, see http://www.bioperl.org.

12.5.2 CGI.pm
CGI.pm is a module for programming interactive web pages. The functions it
provides are geared toward formatting web pages and creating and processing forms
in which users enter information. If you have used the Web, you almost certainly
have used web pages written using CGI.pm. For example, let's create a page that
asks the user what his favorite color is using an HTML form. When the user enters

http://www.bioperl.org

320

the data, the script stores it in a field named `color'. When the user hits "Submit,"
the same page is loaded, only this time, $query->param(`color') contains the name
of a color, so the print statement after the "else" is executed. The CGI script looks
like this:
#!/usr/bin/perl

use CGI; # Load Perl's CGI module

my $query = new CGI; # Create a CGI object named
$query

Send the HTML header and <HTML>
tag
print $query->header, $query->start_html;

If the user is visiting the site for the first
time, ask him

what his favorite color is

unless ($query->param('color')) { # Page 1: Asking the user
print $query->start_form, "What is your favorite color? ",

$query->popup_menu(-name => "color",
-values => ["red", "green", "blue"]),

$query->submit,
$query->end_form;

} else { # Page 2: Telling the user
print "Your favorite color is ", $query->param('color');

}

print $query->end_html; # Send the </HTML> tag

The results of this script are shown in Figure 12-1.

Figure 12-1. Our CGI script generates an interactive web page

12.5.3 LWP
If CGI.pm automates the Web from the server's perspective, the Library for Web
Programming (LWP) automates web interaction from the perspective of the client.
Using LWP, Perl programs can submit data to forms, retrieve web pages, and
eliminate much of the tedium of manually interacting with web services through a
browser. For example, let's say you want to retrieve and print out the HTML source

321

for the main page of http://www.oreilly.com. You can use the LWP::Simple module
as follows:
#!/usr/bin/perl
use LWP::Simple;
print get("http://www.oreilly.com");

This retrieves the HTML source code for http://www.oreilly.com and displays it on
your screen.

12.5.4 PDL
The Perl Data Language (which is abbreviated PDL and pronounced "piddle") is a
module for doing math with matrices. It is frequently used for scientific applications
and image processing in conjunction with the GIMP (since computer representations
of images are just matrices). In computational biology, PDL is invaluable for working
with microarray expression data and scoring matrices, as well as data that begins as
images. For example, 2D gels that measure protein-protein interaction are usually
stored as images, and image processing tricks can locate and compare gel features.

Why do you need a whole library to do linear algebra with Perl? PDL allows you to
work with matrices of arbitrary dimensionality as if they were scalar variables. For
example, a 2D matrix constructed using standard Perl arrays looks like $a[$i][$j]. If
you wanted to add two array-based matrices (let's call them @a and @b) and store
the result to another matrix, @c, you have to write code that looks like this:
for($i=0; $i<$row_max; $i++) {

for($j=0; $j<$col_max; $j++) {
$c[$i][$j] = $a[$i][$j] + $b[$i][$j];

}
}

so that you end up writing two loops, the outer one to iterate over each of the rows,
and the inner to iterate over each column. With PDL, you simply write:
$c = $a + $b;

In other words, when you define your multidimensional arrays as piddles (PDL's
name for its matrix data object) instead of Perl arrays, PDL makes it look like you
are working with simple scalar objects, even if you are working with several-
megabyte matrices. In addition, PDL comes with an interactive mode called perldl
that is useful for trying out calculations with PDL, similar to the interactive modes
provided by the numerical data analysis packages R and Octave (which we will meet
in Chapter 14).

12.5.5 DBI
DBI (short for database interface) is a module for writing programs that interact with
relational databases. It allows you to write programs that put data into databases,
query databases, and extract records from databases, without ever having to pay
attention to the specific database you are using. For example, a script written with

http://www.oreilly.com
http://www.oreilly.com

322

DBI can be used with a MySQL database or an Oracle database with only minor
changes.

12.5.6 GD
The GD.pm module allows you to generate graphics using Perl programs. GD is often
used to create simple, customized plots on web pages, such as web server usage
statistics. PaintBlast.pm, a module that generates graphical representations of
sequence alignments from BLAST output, is an example of a GD application. It `s
available from Bioperl's ScriptCentral.

Chapter 13. Building Biological Databases
Since the advent of the World Wide Web, biological databases have become a vital
part of the biological literature. Knowing how to find information in and download
information from the central biological data repositories is as important a skill for
researchers now as traditional literature searching. Major online data resources, such
as the Protein Data Bank and GenBank, are expertly designed to provide information
to users who have no understanding of how the underlying databases function, and
to allow the deposition of data to a central repository by people who wouldn't know
how to, or want to, build their own private databases.

However, as web databases become more integral to sharing information within the
scientific community, it is likely that more people will want to develop their own
databases and allow their colleagues to access their data directly. Even something as
simple as a web site for a research group can be improved greatly and made easier
to maintain with databases. In this chapter, we introduce some elementary database
terminology and give an example of how to set up a database for a simple data set.

If you're relatively new to the world of computers and software, you're not going to
be able to read this chapter and proceed directly to setting up your own database.
What we hope to give you is an idea of the steps involved in developing a database:
designing a data model, choosing a database management system (DBMS),
implementing your data model, and developing a user-friendly frontend to your
database. What this chapter will give you is a general understanding of the issues in
database development. That understanding will help you to move forward, whether
on your own or with the help of a database expert.

You don't need to understand what makes a database tick in order to use it.
However, providing access via the Web to data you generate is becoming more and
more important in the biology community, and to do that you have to have at least a
rudimentary knowledge of how databases work. Even if you've got enough money
lying around the lab to spring for your own Oracle administrator, you still need to
speak the language.

13.1 Types of Databases
There are two types of database management systems: flat file indexing systems
and relational DBMSs. A third type, the object-oriented DBMS, is beginning to
increase in popularity. Choosing to use a flat file indexing system or a relational

323

database system is an important decision that will have long-range implications for
the capacity and usefulness of your database.

13.1.1 Flat File Databases
Flat file databases are the easiest type of database for nonexperts to understand. A
flat file database isn't truly a database, it's simply an ordered collection of similar
files, usually (but not always) conforming to a standard format for their content. The
emphasis in formatting data for a flat file database is at the character level; that is,
at the level of how the data would appear if it were printed on a page.

A collection of flat files is analogous to having a large filing cabinet full of pieces of
paper. Flat file databases are made useful by ordering and indexing. A collection of
flat files on a computer filesystem can be ordered and stored in labeled folders
exactly the same way as a collection of printed papers are ordered in a file cabinet
drawer (Figure 13-1). When we suggested, in an earlier chapter, using the
hierarchical nature of your filesystem and a sensible file-naming scheme to keep
track of your files, what we were essentially encouraging you to do is to develop a
rudimentary flat file database of your work. Creating a database means you can
remember the rules of the database rather than the locations of individual files and
so find your way around more easily.

Figure 13-1. The relationship of a flat file to a flat file database

Flat file databases are often made searchable by indexing. An index pulls out a
particular attribute from a file and pairs the attribute value in the index with a
filename and location. It's analogous to a book index, which for example tells you
where in a book you will find the word "genome." Like book indexes, database
indexes need to be carefully designed so that they point to a word only when it
occurs in an informative context. Database indexes take note of context by
separately indexing different fields within the file. The word "cytochrome" occurring
in the Molecule Name field in a protein structure file is likely to be far more
significant to the user than the same word occurring only in the file remarks. In the
first context, finding the word "cytochrome" guarantees the file contains information
for some kind of cytochrome molecule. In the second context, the word can appear
as part of an article title or a comment about intermolecular interactions, even
though the structure in the file actually belongs to a different molecule. If multiple
indexes for a file are created, you can then search a particular index file based on
keywords, which is less cumbersome than searching all the actual files in the
database file by file.

324

There's nothing inherently bad about flat file databases. They do organize data in a
sensible way, and with the proper indexing they can be made extensively searchable.
However, as flat file collections grow larger and larger, working with them becomes
inefficient. An index is one-dimensional, so it is difficult (though not impossible) to
make connections between attributes within an indexed flat file database.

13.1.1.1 Flat file databases in biology

Many of the popular biological databases began as flat file databases, and it's
because of their legacy that many of the programs and software packages we
discussed in previous chapters have strict internal requirements for the line format of
input data.

For example, the PDB began by using flat files in the well-known PDB format. The
format of these flat files was designed to be read easily by FORTRAN programs, and
in fact has its roots in the time when computer input data was encoded on punch
cards. When there were just a few protein structure files, maintaining this database
and accessing it was no problem. The PDB did not grow beyond a few hundred files
until 1990, nearly 20 years after its inception.

As PDB growth increased in the 1990s, new solutions for storing data needed to be
found. In practical terms, the full listing of the database was starting to be so long
that, if a user entered a directory containing all the available PDB files and tried to
list filenames, it could take several seconds to even produce a file list. Reading the
contents of large directories slows down even simple Unix tools such as ls, and it is
even more of a problem for computer programs that might repeatedly read a
directory. At first, the PDB was split into subdirectories based on the letters of the
PDB code. But as the database approached 8,000 entries, even that began to prove
too cumbersome.

The PDB now uses an object-oriented database backend (the part of the operation
that resides on the PDB servers and that users don't see) to support database
queries and file access. However, files are still made available in the legacy PDB
format, so that users can continue to work with software that was developed long
before the PDB was modernized.

Beyond the PDB, flat file databases are still widely used by biologists. Many users of
biological sequence data store and access sequences locally using the S equence
Retrieval System (SRS), a flat file indexing system designed with biological data in
mind.

13.1.2 Relational Databases
Like flat file databases, relational databases are just a way of collecting all the
information about something and storing it in a computer. In a flat file database, all
the information about the thing is stored in one big structured text file. In a
relational database, the information is stored in a collection of tables.

The flat file that describes a protein structure is like a bound book. There are
chapters about the origin of the sample, how the data was collected, the sequence,
the secondary structure, and the positions of the atoms.

325

In a relational database, the information in each chapter is put into separate tables,
and instead of having its own book, each protein has its own set of tables. So, there
are tables of experimental conditions, secondary structure elements, atomic
positions, etc. All these tables are labeled with the identity of the protein they
describe, so that connections can be made between them, but they aren't bound
together like a book. The form of the tables follows rules that are uniform across the
database, so you can access all the tables about atomic positions or all the chapters
about experimental conditions at once, just as easily as you can access all the tables
about a particular protein.

If you're interested in only one particular protein, it's not at all inconvenient to go to
the library (the PDB), look the book up in the catalog, and read it straight through.
The librarian can pick a few items of information out of the book (such as the name
of the protein, the author who deposited it, etc.) and put them in an index (like a
card catalog) that will help you find where the book is on the shelf.

But what if you're interested in getting the secondary structure chapter out of every
book in the protein library? You have to go to the library, take down every book from
the shelf, photocopy the secondary structure chapter, and then convert that
information into a form that you can easily analyze.

A relational database management system (RDBMS) allows you to view all of the
protein structure data in the database as a whole. You can "look" at the database
from many different "angles," and extract only the information you need, without
actually photocopying a particular chapter out of each book. Since each separate
item of information about the protein is stored in its own separate table in the
database, the RDBMS can assemble any kind of book about proteins you want, on
the fly. If you want a book about hemoglobin, no problem. Even better, it is just as
easy for the RDBMS to make you a book about the secondary structures of all
proteins in the database.

All you need to do is figure out how to structure the right query to get back what you
want from the database. If you want a book about hemoglobin, you can tell the
RDBMS "if protein name equals hemoglobin then give me all information about this
protein." If you want a book that describes only the secondary structure of each
hemoglobin entry in the database, you can tell the RDBMS "if protein name equals
hemoglobin then give me the secondary structure table about this protein."

13.1.2.1 How tables are organized

Data in a relational database table is organized in rows, with each row representing
one record in the database. A row may contain several separate pieces of
information (fields). Each field in the database must contain one distinct piece of
information. It can't consist of a set or list that can be further broken into parts.

The tables in a relational database aren't just glorified flat files, though they may
look that way if you print them out. Rows are synonymous with records, not with 80
characters on a line. Fields in each row aren't limited by a number of characters;
they end where the value in the field ends. The job of the RDBMS is to make
connections between related tables by rapidly finding the common elements that
establish those relationships.

326

You can get an idea of the difference between data organized into tables and
character-formatted flat file data by comparing the two types of protein structure
datafiles available from the PDB. The standard PDB file is ordered into a series of 80
character lines. Each line is labeled, but especially in the header, the information
associated with a label is quite heterogeneous. For example:
REMARK 1 4HHB
14
REMARK 1 REFERENCE 1 4HHB
15
REMARK 1 AUTH M.F.PERUTZ,S.S.HASNAIN,P.J.DUKE,J.L.SESSLER, 4HHB
16
REMARK 1 AUTH 2 J.E.HAHN 4HHB
17
REMARK 1 TITL STEREOCHEMISTRY OF IRON IN DEOXYHAEMOGLOBIN 4HHB
18
REMARK 1 REF NATURE V. 295 535 1982 4HHB
19
REMARK 1 REFN ASTM NATUAS UK ISSN 0028-0836 006 4HHB
20
REMARK 1 REFERENCE 2 4HHB
21
REMARK 1 AUTH G.FERMI,M.F.PERUTZ 4HHB
22
REMARK 1 REF HAEMOGLOBIN AND MYOGLOBIN. V. 2 1981 4HHB
23
REMARK 1 REF 2 ATLAS OF MOLECULAR 4HHB
24
REMARK 1 REF 3 STRUCTURES IN BIOLOGY 4HHB
25
REMARK 1 PUBL OXFORD UNIVERSITY PRESS 4HHB
26
REMARK 1 REFN ISBN 0-19-854706-4 986 4HHB
27

In the PDB reference records shown here, you can see that entries in each row aren't
distinct pieces of information, nor are the rows uniform. Sometimes there are four
author names on one line; sometimes there are two. Sometimes there are three title
lines; sometimes there is only one. This can cause difficulties in parsing, or reading
the header with a computer program.

Compare this to an mmCIF file. mmCIF is a new data standard for results of X-ray
crystallography experiments. Protein structures have been available from the PDB in
mmCIF format since the management of the PDB changed in 1999.

Before you see any data in the mmCIF file, you see what looks almost like a series of
commands in a computer program, lines that describe how the data in the file is to
be read. Then you'll see tables of data. Here's an example:
loop_
_citation.id
_citation.coordinate_linkage
_citation.title
_citation.country

327

_citation.journal_abbrev
_citation.journal_volume
_citation.journal_issue
_citation.page_first
_citation.year
_citation.journal_id_ASTM
_citation.journal_id_ISSN
_citation.journal_id_CSD
_citation.book_title
_citation.book_publisher
_citation.book_id_ISBN
_citation.details

primary yes
; THE CRYSTAL STRUCTURE OF HUMAN DEOXYHAEMOGLOBIN AT

1.74 ANGSTROMS RESOLUTION
;
UK 'J.MOL.BIOL. ' 175 ? 159 1984
'JMOBAK ' '0022-2836 ' 070 ? ? ? ?

1 no
; STEREOCHEMISTRY OF IRON IN DEOXYHAEMOGLOBIN
;
UK 'NATURE ' 295 ? 535 1982
'NATUAS ' '0028-0836 ' 006 ? ? ? ?

2 no
? ? ? 2 ? ? 1981 ? ? 986
; HAEMOGLOBIN AND MYOGLOBIN.

ATLAS OF MOLECULAR
STRUCTURES IN BIOLOGY

;
; OXFORD UNIVERSITY PRESS
;
'0-19-854706-4 ' ?

An mmCIF file contains dozens of tables that are all "about" the same protein.

The opening lines of the reference section in the mmCIF file (which is just a flat
representation of the collection of tables that completely describes a protein
structure) describe what the fields in each upcoming row in the table will mean.
Rows don't begin arbitrarily at character 1 and end at character 80; they may stretch
through several "lines" in the printout or onscreen view of the data. Rows don't end
until all their fields are filled; when information is missing (as in the previous
example), the fields have to be filled with null characters, such as a question mark or
a space.

In the protein database, the table of literature references that describes a particular
structure is associated with a particular PDB ID. However, there are other tables
associated with that PDB ID as well, and they have totally different kinds of rows
from the reference table. The atomic positions that describe a protein structure are
contained in a separate table with a completely different format:
loop_
_atom_site.label_seq_id

328

_atom_site.group_PDB
_atom_site.type_symbol
_atom_site.label_atom_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.auth_seq_id
_atom_site.label_alt_id
_atom_site.cartn_x
_atom_site.cartn_y
_atom_site.cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.footnote_id
_atom_site.label_entity_id
_atom_site.id
1
ATOM N N VAL A 1 . 6.204 16.869 4.854 7.00 49.05 .

1 1 1
ATOM C CA VAL A 1 . 6.913 17.759 4.607 6.00 43.14 .

1 2 1
ATOM C C VAL A 1 . 8.504 17.378 4.797 6.00 24.80 .

1 3 1
ATOM O O VAL A 1 . 8.805 17.011 5.943 8.00 37.68 .

1 4 1
ATOM C CB VAL A 1 . 6.369 19.044 5.810 6.00 72.12 .

1 5 1
ATOM C CG1 VAL A 1 . 7.009 20.127 5.418 6.00 61.79 .

1 6 1
ATOM C CG2 VAL A 1 . 5.246 18.533 5.681 6.00 80.12 .

1 7 2
ATOM N N LEU A 2 . 9.096 18.040 3.857 7.00 26.44 .

1 8 2
ATOM C CA LEU A 2 . 10.600 17.889 4.283 6.00 26.32 .

1 9 2
ATOM C C LEU A 2 . 11.265 19.184 5.297 6.00 32.96 .

1 10 2
ATOM O O LEU A 2 . 10.813 20.177 4.647 8.00 31.90 .

1 11 2
ATOM C CB LEU A 2 . 11.099 18.007 2.815 6.00 29.23 .

1 12 2
ATOM C CG LEU A 2 . 11.322 16.956 1.934 6.00 37.71 .

1 13 2
ATOM C CD1 LEU A 2 . 11.468 15.596 2.337 6.00 39.10 .

1 14 2
ATOM C CD2 LEU A 2 . 11.423 17.268 .300 6.00 37.47 .

1 15

The values in the atom table are clearly related to the values in the reference table;
they both contain information about the same PDB structure. However, the two types
of data can't just be put together into one big table. It doesn't make sense to put the
reference information into the same scheme of rows and columns the atom
information goes into, either by tacking it on at the "bottom" of the table or by
adding extra columns (although in flat files we are forced to do exactly that!). The
two datatypes are related, but orthogonal to each other.

329

Anywhere in a set of information where it becomes impossible to sensibly tack rows
or columns onto a table, a new table needs to be created.[1] Tables within a database
may have interconnections only at the topmost level, such as the atom and reference
information related to the same PDB file, or they may be more closely linked.

[1] The technical term for the process of separating a complex data set into a collection of
mutually orthogonal, related tables is normalization. For a rigorous discussion of relational
database theory, see the pertinent references in the Bibliography.

You may notice in the reference records two pages back that authors' names aren't
listed. How can that be? Well, the answer is that they're in a separate table. Because
each reference can have an arbitrary number of separate authors, that information
can't just be tacked onto the reference table by adding a fixed number of extra rows
or columns. So there's a separate table for authors' names:
loop_
_citation_author.citation_id
_citation_author.name
primary 'Fermi, G.'
primary 'Perutz, M.F.'
primary 'Shaanan, B.'
primary 'Fourme, R.'

1 'Perutz, M.F.'
1 'Hasnain, S.S.'
1 'Duke, P.J.'
1 'Sessler, J.L.'
1 'Hahn, J.E.'
2 'Fermi, G.'
2 'Perutz, M.F.'
3 'Perutz, M.F.'
4 'TenEyck, L.F.'
4 'Arnone, A.'
5 'Fermi, G.'
6 'Muirhead, H.'
6 'Greer, J.'

This table is related to the previous reference table through the values in column 1,
which match up with the citation IDs in the other reference table. To get from
"Fermi, G." to "THE CRYSTAL STRUCTURE OF HUMAN DEOXYHAEMOGLOBIN AT 1.74
ANGSTROMS RESOLUTION" in this database, you connect through the citation ID,
which specifies the relationship between the two entities.

Using an RDBMS may at first seem like an overthinking of what could be a pretty
simple set of data to store. If you ever write programs that operate on the
antiquated flat-file PDB format, though, you'll realize how useful it might be to
unambiguously assign your data to tables in a relational database. Among other
things, databases eliminate the need for complicated line-format statements and
parsing operations that are required when using 80 character-formatted files.

13.1.2.2 The database schema

The network of tables and relationships between them that makes up a database is
called the database schema. For a database to keep its utility over time, it's best to
carefully develop the schema before you even think about beginning to populate the

330

database. In the example later in this chapter, we develop a schema for a simple
database.

Getting your brain around database schemas and tables can be a challenge without
even coming up with your own schema. However, relational databases are the
standard for large database operations, and understanding RDB concepts is
necessary for anyone who wants to build her own. Before designing your own
database, you should definitely consult a reference that covers relational databases
rigorously.

13.1.3 Object-Oriented Databases
You'll hear the phrase object oriented in connection with both programming
languages and databases. An object-oriented database system is a DBMS that is
consistent with object-oriented programming principles. Some important
characteristics of object-oriented databases are: they are designed to handle
concurrent interactions by multiple clients; they can handle complex objects (beyond
tables of character data); and they are persistent—that is, they survive the
execution of a process. In practice, because of the popularity of object-oriented
programming strategies, most of the major relational DBMSs are compatible with an
object-oriented approach to some extent.

The practical upshot of the object-oriented approach in the database world is the
emergence of DBMSs that are flexible enough to store more than just tables and to
handle functions beyond those in a rigidly defined query-language vocabulary. Since
object-oriented databases handle data as objects rather than as tables, an object-
oriented database can provide access to everything from simple text-format data to
images and video files within the same database. Object-oriented databases don't
force the use of the SQL query language, but rather provide flexible bindings to
programming languages. Many DBMSs are beginning to have both object and
relational characteristics, but the giants of the DBMS world are still primarily
relational DBMSs.

13.2 Database Software
Databases don't just happen: they're maintained by DBMSs. There are several
DBMSs, some open source and some commercial. There are flat file indexing
systems, RDBMSs, object DBMSs (ODBMSs), and object-relational hybrids. Which
DBMS you use depends on what you can afford, how comfortable you are with
software, and what you want to do.

13.2.1 Sequence Retrieval System
Even if you've decided to work with a flat file indexing and retrieval system, you
don't need to reinvent the wheel. The Sequence Retrieval System (SRS) is a popular
system for flat file management that has been extensively used in the biology
community, both in corporate and academic settings. SRS was developed at EMBL
specifically for use in molecular biology database applications, and is now available
as a commercial product from Lion Bioscience, http://www.lionbioscience.com. It is
still offered for free to researchers at academic institutions, along with extensive
documentation (but no tech support). A common application of the SRS database is

http://www.lionbioscience.com

331

to maintain a local mirror of the major biological sequence databases. The current
release is SRS 6.

SRS can be installed on SGI, Sun, Compaq, or Intel Linux systems. To maintain your
own SRS database and mirror the major biological databases requires tens of
gigabytes of disk space, so it's not something to be taken on lightly. SRS has built-in
parsers that know how to read EMBL nucleotide database files, SWISS-PROT files,
and TrEMBL files. It's also possible to integrate other databases into SRS by using
SRS's Icarus language to develop additional databank modules. For an example of
the variety of databases that can be integrated under an SRS flat file management
system, you only have to look at the SDSC Biology Workbench. Until its most recent
release, SRS was the DBMS used within the Biology Workbench, and supported
nearly the full range of databases now integrated into the Workbench.

13.2.2 Oracle
Oracle is the 18-wheeler of the RDBMS world. It's an industry-standard, commercial
product with extremely large capacity. It's also rapidly becoming a standard for
federally funded research projects. Oracle has some object capacities as well as
extensive relational capacities. Potential Oracle customers can now obtain a license
to try Oracle for free from http://www.oracle.com. If you want to provide a large-
scale data resource to the biology community, you may need an Oracle developer (or
a bunch of them) to help you implement it.

13.2.3 PostgreSQL
PostgreSQL is a full-featured object-relational DBMS that supports user-defined
datatypes and functions in addition to a broad set of SQL functions and types.
PostgreSQL is an open source project, and the source code can be downloaded for
free from http://www.postgresql.org, which also provides extensive online
documentation for the DBMS. PostgreSQL can also be found in most standard Linux
distributions. If you plan to create a database that contains data of unusual types
and you need a great degree of flexibility to design future extensions to your
database, PostgreSQL may meet your needs better than MySQL. PostgreSQL is
somewhat limited in its capacity to handle large numbers of operations, relative to
Oracle and other commercial DBMSs, but for midrange databases it's an excellent
product.

13.2.4 Open Source Object DBMS
Several efforts to develop open source ODBMSs are underway as of this writing. One
of the most high profile of these is the Ozone project (http://www.ozone-db.org).
Ozone is completely implemented in Java and designed for Java developers; queries
are implemented in the underlying language rather than in SQL. One emphasis in
Ozone development is object persistence, the ability of the DBMS to
straightforwardly save the states of a data object as it is affected by transactions
with the database user. Like many ODBMSs, Ozone is in a relatively early stage of
development and may not be particularly easy for a new user to understand. Unless
you have a compelling reason to use object-oriented principles in developing your
database, it's probably wise to stick with relational database models until object
technology matures.

http://www.oracle.com
http://www.postgresql.org

332

13.2.5 MySQL
MySQL is an open-source relational DBMS. It's relatively easy to set up and use, and
it's available for both Unix and Windows operating systems. MySQL has a rich and
complex set of features, and it's somewhat different from both PostgreSQL and
Oracle, two other popular RDBMSs. Each system recognizes a different subset of SQL
datatypes and functions, and none of them recognizes 100% of the possible types.
MySQL sets lower limits on the number of operations allowed than PostgreSQL and
Oracle do, in some cases, so it's considered suitable for small and medium-sized
database applications, rather than for heavy-duty database projects. However, this
isn't a hard and fast rule: it depends on what you plan to do with the data in your
database. MySQL is strictly a relational DBMS, so if you plan to store unusual
datatypes, it may not be the right DBMS for you. For most standard database
applications, however, MySQL is an excellent starting point.

MySQL's developers claim that it can manage large databases faster than other
RDBMSs. While their benchmarks seem to bear out this claim, we haven't
independently evaluated it. What we can say is that it's possible to learn to use
MySQL and have a rudimentary database up and running within a few hours to a few
days, depending on the user's level of experience with Unix and SQL.

13.3 Introduction to SQL
As a practical matter, you are most likely to work either with specialized flat file
database systems for biological data, like SRS, or with some kind of RDBMS. In order
to work with an RDBMS, you need to learn something about SQL.

SQL, or Structured Query Language (usually pronounced "see-kwl" by those in the
know, ess-que-ell by literalists, and "squeal" by jokers) is the language RDBMSs
speak. SQL commands are issued within the context of a DBMS interface; you don't
give a SQL command at the Unix command line. Instead, you give the command to
the DBMS program, and the program interprets the command.

SQL commands can be passed to the DBMS by another program (for instance, a
script that collects data from a web form) or hand-entered. Obviously, the first
option is the ideal, especially for entering large numbers of records into a database;
you don't want to do that by hand. We can't teach you all of the ins and outs of
programming with SQL, however; in this section we'll just focus on the basic SQL
commands and what they do. Later on, we'll show an example of a web-based
program that can interact with a SQL database.

SQL commands read like stilted English with a very restricted vocabulary. If you
remember diagramming sentences in high-school English class, figuring out subject-
verb-object relationships and conditional clauses, SQL should seem fairly intuitive.
The challenge is remembering the restrictions of vocabulary and syntax, and
constructing queries so that your DBMS can understand them. A SQL statement
might read something like this:[2]

[2] SQL commands don't have to appear in all capital letters; they're case-insensitive. But we'll
write them in all capital letters in our examples, so that you can distinguish them easily from
the names of files, variables, and databases. File, variable, and database names are case-
sensitive in SQL, so if you name a database PeOPlE, you'll have to live with that.

333

SELECT program FROM software WHERE program LIKE 'blast'

This says "select the names of programs from the list of software where the name of
the program is like blast." This is something you might want to do if you use a
searchable database of bioinformatics software.

As mentioned above, all DBMSs aren't created equal. There is a SQL standard
vocabulary, called SQL 92; however, most systems implement only parts of this
standard. You need to study the documentation for the particular DBMS you're using
so you don't confuse it by giving unrecognized commands.

13.3.1 SQL Datatypes
The notion of a datatype is simple to understand. A datatype is an adjective that
describes the data stored in a particular column of a table. In general, data stored in
a table can consist of either numeric values or character strings. SQL, however,
defines a multitude of subtypes within these common datatypes, mostly variants that
set different upper limits on the size of a text field or numerical field, but also special
numeric types such as DATE or MONEY.

When you create tables in a database, you need to define the type of each column.
This means you need to know from the beginning, as you are setting up your data
model, what type of data will be contained in each column. You should also have a
rough idea of the likely upper and lower limits for your data, so that you can select
the smallest possible type to contain them. For instance, if you know that the integer
values in a column in your table will never be greater than 255, you should use the
smallest possible integer type, TINYINT, for that column, rather than making space
for much larger values in your database when you won't actually need that space. On
the other hand, if that value will eventually grow beyond 255, then you should
choose a type that allows a broader range of values for that column. Setting up a
relational database requires quite a bit of intelligent forethought.

Here are some of the most popular SQL types, all of which are supported in most
major RDBMS programs:

INT

An integer number. Variations include TINYINT, SMALLINT, MEDIUMINT, and
BIGINT. Each of these allows a different range of numerical values.

FLOAT

A floating-point number. Maximum value on the order of 3 E 38; minimum
value on the order of 1.7 E-38.

REAL

A longer floating-point number. Maximum value on the order of 2 E 308;
minimum value on the order of 2 E-308.

CHAR

334

A fixed-length text string. Values shorter than the fixed length are padded
with spaces.

TEXT

A variable-length text string with a maximum value. Variations include
TINYTEXT, MEDIUMTEXT, and LONGTEXT.

BLOB

A variable-length binary field with a maximum value. Variations include
TINYBLOB, MEDIUMBLOB, and LONGBLOB. Just about anything can go in a
binary field. The maximum size of a LONGBLOB is 4 GB. All sorts of
interesting things, such as image data, can go into a binary field.

DECIMAL

A real number that is stored as a character string rather than as a numerical
field.

DATE

A date value that stores the year, month, and day.

TIMESTAMP

A time value that updates every time the record is modified.

ENUM

A value that is one of a limited set of options and can be selected using either
the option name or a numeric value that represents the name.

SET

A value that is one of a limited set of options.

13.3.2 SQL Commands
SQL has many commands, but it's probably most important for you to know how to
create new tables, add data to them, and then search for data in your database.
We'll introduce you briefly to the SQL CREATE, ALTER, INSERT, UPDATE, and SELECT
commands, as they are implemented in MySQL. The references mentioned in the
Bibliography contain full descriptions of the SQL commands available through
MySQL.

13.3.2.1 Adding a new table to a database

New tables are created with the SQL CREATE statement. The syntax of the CREATE
statement is simply:

335

CREATE TABLE tablename (columnname type [modifiers] columnname type
[modifiers])

If you want to create a table of information about software packages, for the
example database we discuss in this chapter, you can do as follows:
CREATE TABLE software_package

(packid INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
packname VARCHAR(100)
packurl VARCHAR(255)
function TEXT
keyword ENUM
os SET
format SET
archfile VARCHAR(255)

)

This command tells MySQL to set up a table in which the first column is an
automatically incrementing integer; that is, the DBMS automatically assigns a unique
value to each entry you make. The second and third columns are variable-length
character strings with preset maximum lengths, in which the name and URL of the
software package will be entered. The fourth column is a text field that can contain
up to 64 KB of text describing the software package. The fifth column allows you to
choose one of 64 preset keywords to describe your software package; the sixth and
seventh columns let you choose any number of values from a set of preset values to
describe the operating systems the software will run under (e.g., mac, windows,
linux) and the type of archive file available (e.g., binary, rpm, source, tar). The final
field is another variable character string that will contain the URL of the archive file.

13.3.2.2 Changing an existing table

If you create a table and you decide that it should look different than you originally
planned, you can use the ALTER command to change it. To add another column to a
table, the syntax is:
ALTER TABLE tablename ADD [COLUMN] (columnname type [modifiers])

13.3.2.3 Adding data to an existing table

The INSERT command adds a new row of data to a table. The syntax of the INSERT
command is:
INSERT INTO table (colname1, colname2, colname3) VALUES (
'value1','value2','value3')

13.3.2.4 Altering existing data in a table

The UPDATE and REPLACE commands can modify an existing row in a table. Your
user privileges must allow you to use UPDATE and REPLACE. These commands can
take a WHERE clause, with syntax analogous to that of the SELECT command, so
that you can specify under what conditions a record is updated.

336

13.3.3 Accessing Your Database with the SQLSELECT Command
The SQL SELECT command finds data in a table for you. In other words, SELECT is
the command that makes the database useful once you have created it and
populated it with data. It can be modified by a conditional clause that lets you
determine under what conditions a record is selected from the table.

13.3.3.1 Choosing fields to select

The general syntax of the SELECT command is:
SELECT [fields] FROM [table] WHERE [clause]

To select all the fields in a particular table, the asterisk character can be used:
SELECT * FROM [table] WHERE [clause]

In this chapter's database example, if you want to select the software package name
and software package URL from the software table, the SELECT command is:
SELECT packname, packurl FROM software

13.3.3.2 Using a WHERE clause to specify selection conditions

The WHERE clause allows you to specify conditions under which records are selected
from a table. You can use standard operators, such as =, >=, etc., to set the
conditions for your WHERE clause. MySQL also allows you to use the LIKE and NOT
LIKE operators for pattern matching.

If you want to set up your SELECT statement to find only software for sequence
alignment, it should look like this:
SELECT packname, packurl FROM software WHERE keyword = "sequence
alignment";

If you want to find only software packages with names starting with the letter B, the
SELECT statement looks like this:
SELECT packname, packurl FROM software WHERE packname LIKE "B%";

The % character is a wildcard character that represents any number of characters, so
the software packages you select using this statement can have names of any length
as long as the name starts with B.

13.3.3.3 Joining output from multiple tables

SELECT can also join two related tables. When we talk later about developing
databases, you'll find that relationships between tables are created by replicating
information called a primary key from one table as a foreign key in another table. If
the foreign key in one table matches the primary key in another, the data in the two

337

tables refers to the same record and can be joined to produce one set of output from
SELECT. A MySQL SELECT statement for joining two tables might look like this:
SELECT FROM table1, table2 WHERE primarykey1=foreignkey2

For instance, we've already discussed creating one table that lists the names, URLs,
and other details about the software packages listed in the database. In order to
build the database properly, you have to have another table that lists information
about the literature references that describe the functions of the software packages
in the database.

What if you want to select only the names and URLs of software packages that were
first described in the literature in 1998 or later? The names and URLs are found in
the software table; the dates are found in the reference table. Here's the SQL:
SELECT packname, packurl, reference_date FROM software, reference
WHERE software.package_id = reference.package_id
AND reference_date >= "1998";

The variable package_id is the primary key from the software table, and it is
replicated in the reference table to maintain a relationship between the details of
software packages and the references that describe them. If the value of package_id
is the same in both tables, the two rows being accessed are part of the same record
in the database. Therefore, the first part of the WHERE clause is what joins the two
tables. The second part of the WHERE clause (AND reference_date >= "1998")
specifies the actual selection condition.

Different database-management systems implement different levels of join
functionality, so you will have to check the specific documentation for your DBMS to
see how joins work.

13.4 Installing the MySQL DBMS
To set up and maintain your own database, you need to have a database server
installed on the machine on which the data will be stored.

MySQL is a lightweight relational DBMS that is fairly easy to install and run. We're
going to use MySQL to set up the example database, so if you're interested in trying
it out, be sure the MySQL server is installed on your machine. If you're using a Red
Hat Linux distribution, this is ridiculously easy. If you didn't install MySQL when you
set up your machine, simply use kpackage or gnorpm to select the MySQL
components you want to install—the server, clients, and development tools. This will
probably give you an older version of MySQL; to get the current version and install it
easily, use the binary RPMs from the latest stable version at http://www.mysql.com.
You'll also want to make sure the Apache web server and PHP support, available
from http://www.apache.org, are installed. The next time you restart your machine
after the install, the MySQL server daemon,[3] mysqld, is started, MySQL privilege
databases are initialized, and the PHP module is made available to your Apache
server.

[3] System processes such as servers that run in the background on Unix systems are known
as daemons.

http://www.mysql.com
http://www.apache.org

338

13.4.1 Setting Up MySQL
When you look at RDBMS software, you usually find you have a choice of setting up
a client or a server. The server part of the program runs on the machine on which
the data is actually stored. It runs as a daemon on Unix machines; that is, as a
system process that is always on, listening for and responding to requests from
clients. The MySQL server program is called mysqld. Figure 13-2 shows an example
of a client/server architecture.

Figure 13-2. Client/server architecture

Clients are programs that connect to the server and request data. Clients can be
located on the database server itself, but they also can be located on other machines
on which mysqld isn't running and connect over the Internet to the main database.

The MySQL client programs include mysql, the main client that lets you do
everything from designing databases to inserting records; mysqladmin, which
performs selected administrative functions such as creating new databases and
checking the status of the server; and client5. client5 is similar to mysql in that it
allows interactive query processing, but for security purposes, it doesn't allow you to
add and modify database records.

When we talk about the MySQL DBMS as a whole, we refer to it as MySQL. When we
talk about a client program that's part of MySQL, we refer to it by its specific client
name.

13.4.1.1 Using the mysql client program

The mysql program has only a few commands of its own; the commands that are
primarily directed to the mysql program or the client5 program are SQL statements.
When you are inside the mysql program, the program interprets any SQL statement
you give to it as one continuous statement, until the terminating character ";" is
read. Here are the mysql commands:

use

Takes a database name as its argument; allows you to change which
database is in active use

339

status

Returns the status of the server

connect

Reconnects with the server

go

Sends a command to the MySQL server; also can be indicated by terminating
a SQL statement with \g or ;

help

Prints a complete list of mysql commands

13.4.1.2 Using the mysqladmin client program to set up MySQL

You can get a comprehensive listing of mysqladmin commands with the command:
mysqladmin --help

Here are the commands you are likely to use frequently:

create

Takes a database name as its argument; creates a new database

drop

Takes a database name as its argument; deletes an entire database

reload

Reloads the grant tables

variables

Prints available variables that describe the MySQL installation

ping

Checks to see if the MySQL server is alive

shutdown

Shuts down the MySQL server on the local machine

340

13.4.1.3 Restarting the MySQL server

mysqladmin has an option for shutting down the server. But what about starting it
up again? To start your MySQL server, use the Unix su command to become the
MySQL administrator, whether that's user mysql or some other user ID. Then, start
the MySQL server with the command:
safe_mysqld &

13.4.2 Securing Your MySQL Server
Your MySQL server isn't secure when you first install it from RPMs, although the
databases are initialized. To secure your server, you should immediately set a root
password for the MySQL installation. This can (and should) be different from your
system root password. MySQL usernames and system usernames aren't connected,
although server processes do need to run under a user ID that exists on your server.
You need to use the mysql program directly to update the user grant table, the main
table of permissions for MySQL users. To invoke the mysql program, give the
command:
mysql -u root mysql

Your command prompt will change to mysql>, which indicates you are inside the
mysql program until you quit using the quit command.

To update the grant tables, type:
UPDATE user SET Password=PASSWORD("your_password") WHERE User="root";

When you issue this command through the mysql program, you're giving a SQL
command to update the table user in the database mysql. After you reset the root
password, exit mysql and tell MySQL to reread the grant tables with the command:
mysqladmin -u root reload

Now you can reaccess the mysql program and other client programs only if you use
the proper root password. To restart the mysql program on the mysql database, give
the command:
mysql --user=root --password mysql

You'll be prompted for your password. If you enter the password on the command
line, instead of allowing mysql to prompt you for the password, the password can
become visible to other users (or hackers) of your system.

If you install MySQL from RPMs on a Linux system, during the installation the mysql
user ID is added to your system. This user should own the MySQL data directory and
its subdirectories. The MySQL daemon runs as a process started by system user
mysql, and access to the database is controlled by that user. You can set the system
password for user mysql using the Unix passwd command as root. To set the MySQL
password for this user, you may need to use SQL commands to insert the user mysql

341

into the grant tables. The SQL statement that creates the mysql user and grants it
global access permissions for all of your databases is:
INSERT INTO user VALUES("localhost","mysql",PASSWORD("your_password"),
"Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y");}

For more on administration and security of MySQL databases, we suggest you
consult the pertinent books listed in the Bibliography.

13.4.3 Setting Up the Data Directory
If you install MySQL from RPMs, your data directory is automatically located in
/var/lib/mysql. When you set up your workstation, you may not have left much
space on the /var partition. If you're going to be doing a lot with databases, you
probably want to give the MySQL data directory some room to grow.

An easy way to do this is to relocate the data directory to a different partition and
create a symbolic link from that directory to /var/lib/mysql. If you relocate the data
directory this way, you don't have to change any MySQL configuration information.

First, choose a location for your data directory. You can, for example, create a
directory /home/mysql/data. Then, shut down your MySQL daemon using:[4]

[4] You also need to include -- user=mysql -- password on the mysqladmin command line, but
from now on, we're going to assume you know that.

mysqladmin shutdown

Using the Unix mv command, move all the files in /var/lib/mysql to
/home/mysql/data. Once the /var/lib/mysql directory is empty, use rmdir to remove
it. cd to the /home/mysql directory and type:
chown -Rf mysql:mysql data

This sets the proper file ownership for all the files in that directory. Finally, use ln -s
to create a symbolic link between the /home/mysql/data directory and
/var/lib/mysql. Then restart your MySQL server by typing:
safe_mysqld &

You'll probably need to be logged in as the superuser to do this.

13.4.4 Creating a New Database
Once your MySQL server is installed and running, you need to create a new database
and grant yourself the correct permissions to read and write to that database. You
can do this as MySQL user mysql, unless you want to create a separate identity for
yourself right now. We're going to make a database of bioinformatics resources on
the Web, so you need to create a database called resourcedb. To do this, simply
type:

342

mysqladmin --user=mysql --password create resourcedb

Then run mysql on the resourcedb database with the command:
mysql --user=mysql --password resourcedb

13.5 Database Design
The example we'll walk you through is a simple example of how to use MySQL to
create a searchable database of bioinformatics software web sites.[5] We'll also talk a
little bit about a scripting language called PHP, which allows you to embed
commands that let others access your database directly into an HTML file, and about
other ways to access your database from the Web.

[5] Don't run out and implement this on your machine just because we talked about how to do
it. The Web is teeming with out-of-date collections of bioinformatics links (and other kinds of
links), and unless you intend to be a responsible curator, no one really needs you to add to
them.

If you're looking for bioinformatics or computational biology software on the Web,
there are several things you'll probably want to know about each item you find and
several ways you'll want to query the database. You'll want to know the name of
each item and have access to a description of what it does and the URL from which
you can download it. You'll probably want to know the author of the item and what
papers have been published about it. You may even want to have immediate access
to a Medline link for each reference. You'll want to know what operating systems
each item works under, and what format it's available in; you may even want a
direct link to the archive file. You may also want to be able to search the database by
keywords such as "sequence alignment" or "electrostatic potential."

That sounds pretty simple, right? You may be thinking that all that information would
go nicely into one table, and a complicated RDBMS isn't needed to implement this
kind of database. Figure 13-3 shows what that big table looks like.

Figure 13-3. The bioinformatics software DB as one big table

However, if you look more closely, you'll see it's not really possible for even a simple
bioinformatics software database to fit in one table. Remember, data in tables must
be atomic ; that is, each cell must contain only one distinct item, not a list or a set.

If you think through the possibilities, you'll realize that there are several places
where lists or sets might occur in a bioinformatics software database record: there
might be multiple authors, and/or multiple publications describing the software; the

343

software might be available for many different operating systems; and there might
be more than one keyword used to describe each item.

13.5.1 On Entities and Attributes
Databases can contain two kinds of information: information that indicates an entity
or thing that might have relationships with other things; and information that is
purely descriptive of a single entity—attributes of that entity.

In our database example, the one thing we are sure of is that a software package is
an entity. Let's begin designing the tables in this database by listing all the
information associated with each software package:
Software package name
Software URL
Textual description of function
Descriptive keyword
Operating system
Software format
Archive filename
Reference
Author
Medline link

We may be able to think of more information about each software package in the
database, but for the purposes of this example, we'll leave it at that.

Entities can be described by both attributes and relationships to other entities. If an
entry in a database has no attributes and no relationships, it shouldn't be considered
an entity. One item in our list of facts about each software package definitely has
attributes; each reference has an author or authors, and each reference has a
Medline link. Therefore, references should be a separate entity in the database. So
we'll need at least two tables:
SoftwarePackage

Software package ID
Software package name
Software URL
Textual description of function
Descriptive keyword
Operating system
Software format
Archive filename

Reference

Reference ID
Reference name
Reference year
Author
Medline link

344

We've included an "identifier" attribute in each table. Why? Imagine that there are
two software packages named BLAST. Both do very different things. They need to be
distinguished from each other in our database, but not by creating another table of
"things named BLAST." The unique ID allows us to store information about two
software packages named BLAST in the same table and distinguish them from each
other.

Ideally, we want entities to have either one-to-one relationships or one-to-many
relationships with each other. The relationship of references to software packages is
a one-to-many relationship: each software package can be described by many
references, but each reference describes only one software package (see Figure 13-
4). Many-to-many relationships can't be sorted out by the RDBMS software, so they
need to be eliminated from the data model before creating a database.

Figure 13-4. Relationship of package to reference

If you're observant, you'll notice that within the Reference table, there is a many-to-
many relationship just waiting to happen. Each author can produce many references,
and each reference can have many authors. The presence of that many-to-many
relationship indicates that Author should probably be a separate entity, even though
we haven't chosen to store any attributes about authors in our current data model.
So we actually need a third table:
Reference

Reference ID
Reference name
Medline link

Author

Author ID
Author Name

Even after we create a new table for the Author entity, though, the relationship
between authors and references is still many-to-many. This can be resolved by
creating a junction entity that has no purpose other than to resolve the many-to-
many relationship between the two. The junction entity could be called AuthorRef, or
any other arbitrary name. Its only attributes will be its unique identifier (primary
key) and the foreign keys that establish its relationship with the other tables.

13.5.2 Creating a Database from Your Data Model

345

When you actually create your database, entities become tables. Every attribute
becomes a column in the table, and the ID becomes the primarykey for that table.
Relationships to information in other tables become foreign keys.

Before relationships are established, the four tables in our database contain the
following information:
SoftwarePackage

Software package ID
Software package name
Software URL
Textual description of function
Descriptive keyword
Operating system
Software format
Archive filename

Reference

Reference ID
Reference name
Reference date
Medline link

AuthorRef

AuthorRef ID

Author

Author ID
Author Name

Each attribute is a column in the table, and each column must have a datatype. The
primary keys can be integer values, but they can't be NULL or empty. The
appropriate datatype for the primary key identifiers is thus INT_NOT_NULL; the rest
of the fields can be defined as TEXT fields of one size or another.

13.5.3 Creating Relationships Between Tables
To store the relationships between tables in your database, you place the primary
key from one table in a column in the other table; that column is called a foreignkey.
In our example, the primary key of the SoftwarePackage table is also entered in a
column in the Reference table, because there is one software package to many
references. The primary key from the Reference table and the primary key from the
Author table become foreign keys in the AuthorRef table; there are many AuthorRefs
for each author, and many AuthorRefs for each reference.

Once you've worked out what information your tables will contain, and what format
each column will be in, you have what is called a physical model of your database
and you are ready to create it using SQL CREATE statements, as we demonstrated
earlier.

346

13.6 Developing Web-Based Software That Interacts
with Databases
The purpose of public biological databases is to allow the biology community to share
data in a straightforward manner. Nothing is more straightforward than the Web.
Therefore, it's almost a given in developing a database (especially with federal
funding involved) that you will eventually think about how to make data available on
the Web. There are several technologies that allow communication between web
pages and databases. The oldest of these is called Common Gateway Interface (CGI)
programming, but CGI is now being augmented by other technologies such as XML
and PHP.

The world of web-based software development is a rapidly changing one, and it's not
our job to detail all the available technologies in this book. However, you should be
aware of what these technologies are and roughly how they work, because every
time you make a request that directs a web server to process some information, you
are using one of them.

If you want to set up your own web server and offer data-analysis services to other
users, you need to use CGI scripts or web pages that incorporate XML or PHP code.
After we give brief explanations of CGI and XML, we'll show you a couple of
examples of how to use PHP commands in your web pages to access the example
database we've just created.

13.6.1 CGI
A CGI program, or script, is a software application that resides on a web server.
When the CGI program is called by a remote user of the web server, the application
executes on the server and then passes information back to the remote user in the
form of a web page, as shown in Figure 13-5. CGI programs are accessed using the
Hypertext Transport Protocol (HTTP) just like normal HTML web pages. Unlike normal
web pages, however, CGI scripts either live in a special directory (such as /cgi or
/cgi-bin) within the server's web documents directory, or they have a special file
extension such as .cgi. When the server receives an HTTP request, instead of just
serving the CGI code to your browser as it does for a normal web page, the server
executes the CGI program. CGI is a relatively mature technology and is supported by
all the major web servers.

CGI programs usually consist of multiple sections (see Figure 13-5). First, there may
be a section of the program that collects user input from a web form. This is followed
by the section of the program that takes the user input and does something with it.
The CGI program may contain the complete code to do the input processing, but it is
more likely that the program formats the input appropriately and passes it to a
separate program that exists on the server, then collects the output from that
program when the run is completed. The final function of the CGI program is to
return the output from the process that ran on the server to the user in the form of a
web page, which may contain either textual output or links to downloadable results
files, or both.

Figure 13-5. How a CGI program is executed

347

An example of a CGI program you might use is the BLAST server at NCBI. When you
select "Basic BLAST search" from the NCBI BLAST home page, you'll notice that the
URL of the new page actually points to a CGI script:
http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0

The first part of the URL, up to the question mark, gives the directions to the CGI
program. The second part of the URL is state information, which tells the CGI
program what part of its functionality is needed. The state information in this
particular URL is telling the BLAST CGI program to bring up an empty search form in
which you can enter your sequence.

Once you click the "Submit" button, a new page appears. The new page lists your
request ID and approximately how long the request will take to process. Behind the
scenes, the CGI program has passed your request to the actual BLAST program,
which runs on NCBI's server. When BLAST finishes running your request, the results
are written out and labeled with the request ID the server assigned to you. The CGI
program then looks for your results under that request ID.

After the search is run, you have the option of displaying your data. The URL still
points to the BLAST CGI program, but the state information changes. The URL now
looks like this:
http://www.ncbi.nlm.nih.gov/blast/blast.cgi?RID=965246273-2980-7926
&DESCRIPTIONS=100&ALIGNMENTS=50&ALIGNMENT_VIEW=0&&HTML=on&OVERVIEW=on
&REFRESH_DELAY=22

The state information that is being passed along in this URL tells the program which
NCBI request ID (RID) to search for on the server and how the results should be
displayed, information that you had the option of entering through the menus on the
previous form. The new page that is displayed with this URL contains a listing of your
BLAST results as well as links to other information at NCBI. The BLAST results and
links were generated behind the scenes on the NCBI server and written to what
appears to you as a normal web page (see Figure 13-6).

Figure 13-6. Processing a BLAST request at NCBI

http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0
http://www.ncbi.nlm.nih.gov/blast/blast.cgi?RID=965246273-2980-7926

348

CGI programs produce a lot of the dynamic content currently available on the Web,
although other methods for producing dynamic content are becoming popular.

13.6.2 XML
The eXtensible Markup Language, better known as XML, is a data-representation
scheme that has attracted a great deal of attention in the last few years. Like the
HTML language that describes web pages, XML is derived from the Standard
Generalized Markup Language (SGML). HTML and XML define tags that are used to
annotate a document. Tags are surrounded by angle brackets and use the syntax
<tag>text</tag>. HTML tags specify a web page's structure and appearance. For
example, the text this is bold is rendered in boldface.

XML tags, on the other hand, define a document's content. For example, in the text:
homologs of the sequence <gi>g7290345</gi>

the GenBank ID g7290345 is unambiguously identified because it is bracketed by
<gi> tags. If you write a program that searches a document for GenBank IDs, it's
easier to find them if they're explicitly labeled than if you specify a GenBank ID
regular expression. Thus, XML lends structure to flat file data such that it can be
read and written in a standard way.

The tags used in a given XML document are defined in a document type definition, or
DTD. The DTD acts as a dictionary for the data format, specifying the elements that
are present in a document and the values each attribute may have. The DTD can
exist in its own file, or it can be part of the XML datafile itself. Because XML allows
users to define their own tags in a DTD, it provides a rich and detailed description of
information that would potentially end up in a glob of free text (for example, the
REMARK fields in a PDB file). The downside of this descriptiveness is that records can
rapidly become bloated with details, especially when representing complex data such
as the results of microarray experiments.

The fact that XML can mark up data in flat files in a standard and uniform way is
significant for working with biological data, which is often stored in flat files. For
example, if you want to use data in the ASN.1 format described earlier in this book,
you need an ASN.1 parser, which reads only ASN.1 data. By the same token, if you
need to read in files in PDB format, you need a different parser for PDB files.
However, if your data is marked up in XML, any XML parser can read the data into
your program. Here is an example of an XML representation of PDB author data:

349

<!-- Simple PDB citation DTD -->
<!ELEMENT citation (author)+>
<!ELEMENT author (first-name, last-name)>
<!ELEMENT first-name (#PCDATA)>
<!ELEMENT last-name (#PCDATA)>

<!DOCTYPE pdbcite SYSTEM "pdbcite.dtd">
<citation>

<author>
<name>Fermi, G.</name>
<citation_id>primary</citation_id>

</author>
<author>

<name></name>
<citation_id></citation_id>

</author>
...

</citation>

A number of XML parsers are available for the programming languages commonly
used in bioinformatics research, including Perl, Java, Python, and C++. There are
two basic types of XML parser: nonvalidating and validating. Nonvalidating parsers
read the XML file and ensure its overall syntactic correctness. Validating parsers, on
the other hand, can guard against missing or incorrect values. By comparing the XML
document against its DTD, a validating parser ensures that the markup of the data
isn't only syntactically correct but that each tag or attribute is associated with
appropriate values.

13.6.2.1 XML applications

Thanks to its flexibility and success in other domains, XML has been adopted as a
data description language for some bioinformatics projects. XML has caught on
particularly well in genome annotation: the Genome Annotation Markup Element
(GAME-XML) DTD was developed by Suzanne Lewis and coworkers at the Berkeley
Drosophila Genome Project to represent sequence features in genomes. XML is also
the basis for the markup scheme proposed by Lincoln Stein, Sean Eddy, and Robin
Dowell for the distributed annotation system, DAS. Some other example applications
of XML include the Biopolymer Markup Language (BioML) sequence description
format developed at Proteometrics, the Taxonomic Markup Language developed by
Ronald Gilmour of the University at Albany for representing the topology of
taxonomic trees, and the Chemical Markup Language (CML) for representing small
molecule structures.

Information about these and other applications of XML in bioinformatics are available
at the web page of the Bioxml group, the XML-specific arm of the Bioperl Project
(http://www.bioxml.org). Additional information about XML and its associated
technologies are available from the WWW Consortium (http://www.w3c.org).

13.6.3 PHP
PHP is a hypertext preprocessor module for your web server that allows it to read
and interpret PHP code embedded in web pages. PHP code resembles, but isn't
identical to, familiar programming languages such as Perl and C.

350

PHP runs on most web servers; see http://www.php.net for more information. Unlike
some other dynamic content technologies out there (for instance, Microsoft's ASP),
PHP is an open source project that is supported on multiple operating systems. PHP
also has built-in support for interacting with MySQL, PostgreSQL, and Oracle
databases.

When a web page that incorporates PHP code is requested from a web server, the
server processes the PHP instructions in the page before passing it to the client. The
page source appears to the client as standard HTML; the PHP code remains invisible
to machines beyond the web server.

PHP commands can be interspersed with HTML code in just about any order that
seems useful to the page designer, and the resulting HTML will appear at that point
after the PHP code is processed. PHP also has the capacity to include external files,
so you can write the code that controls the appearance of the web page in the main
PHP file and place subroutines in separate files to be included. PHP pages are
distinguished from standard HTML files by a .php extension.

13.6.3.1 Accessing MySQL databases with PHP

Accessing a MySQL database with PHP doesn't take much work. You need one line of
code to connect to the database, another line to select which database to use, a
query statement, and a statement that sends the data as HTML to the client's web
browser. A simple example might look like this:
<?php
$link =@mysql_pconnect ("myhost.biotech.vt.edu","cgibas","password") or
exit ();
mysql_select_db ("resourcedb") or exit ();
$result = mysql_query ("SELECT program, url, institution FROM software
WHERE program = "BLAST") or exit ();
while ($row = mysql_fetch_row ($result))
{

print("
\n");
for ($i = 0; $i < mysql_num_fields ($result); $i++)
{

print ($row[$i]);
}

}
mysql_free_result ($result);
?>

The first line of code (< ? php) signals the start of a chunk of PHP code. The next
step is to connect to the MySQL server with the specified name and password, or
terminate the script if the connection is unsuccessful:
$link =@mysql_pconnect ("myhost.biotech.vt.edu","cgibas","password") or
exit ();

Now you request the database called resourcedb:
mysql_select_db ("resourcedb") or exit ();

http://www.php.net

351

Next, issue a MySQL query that selects values from the program, URL, and
institution fields in the software table when the program name is equal to "BLAST":
$result = mysql_query ("SELECT program, url, institution FROM software
WHERE program = "BLAST") or exit ();

Every time a row is read from the database, you break that row down into fields and
assign them to the $row variable, then step through each of the fields in the row and
print out the value of that field:[6]

[6] The way we've done this, it will be a rather ugly plain-text printout. Adding HTML table tags
at various points in the command sequence results in much prettier output.

while ($row = mysql_fetch_row ($result))
{

print("
\n");
for ($i = 0; $i < mysql_num_fields ($result); $i++)
{

print ($row[$i]);
}

}

Finally, release the results from memory when the query is completed:
mysql_free_result ($result);

The last line of code (? >) terminates the PHP portion of the web page.

13.6.3.2 Collecting information from a form with PHP

Obviously, this code would be more useful if you substituted a variable name for the
word "BLAST," and created a little form that would let the user input a word to be
assigned to that variable name. All of a sudden, instead of a little bit of PHP code
that searches the database for BLAST servers, you have a crude search engine to
find a user-specified program in the resourcedb database.

Forms are created in PHP using PHP print statements to produce the HTML code for
the form. For example, to produce a pair of radio buttons, the PHP code looks like
this:
print("<INPUT TYPE=\"radio\" NAME=\"type\" VALUE=\"Yes\"
CHECKED>Yes\n");
print("<INPUT TYPE=\"radio\" NAME=\"type\" VALUE=\"No\">No\n");

Other form features are implemented analogously. For more information about
forms, collecting data using forms, and detailed examples of how to produce a PHP
form, see the MySQL references in the Bibliography.

Web database programming isn't something you can learn in a few pages, but we
hope we've convinced you that creating a MySQL database is something that you can
do if needed, and that writing the PHP code to access it won't be that much harder
than working with HTML and Perl. Rather than showing the full PHP code for the

352

MySQL database example, we'll walk you through the important things the PHP code
will need to do.

To interact with our example database, you want a PHP script that does several
major tasks:

1. Present a welcome page to the user. The page should allow the user the
option of searching the database or adding a new entry to the database.
Behind the scenes, that selection needs to be processed by the PHP script so
that it subsequently presents the correct page.

2. Present a query submission form to the user. The PHP code needs to build a
useful form, then grab the data the user enters in the form and use it to build
SQL SELECT statements.

3. Present query results to the user. As matching records are found in the
database, the program will have to format each one into a reasonably nice-
looking piece of HTML code so that it displays in the user's web browser in a
readable format.

4. Present a form for adding a new entry. This assumes you have granted
permissions for adding entries to the database to outside users and will
require you to collect username and password information.

5. Add the new entry to the database. This routine needs to take the information
from the add form and actually use a SQL INSERT command to add it to the
database.

Chapter 14. Visualization and Data Mining
Any result in bioinformatics, whether it is a sequence alignment, a structure
prediction, or an analysis of gene expression patterns, should answer a biological
question. For this reason, it is up to the investigators to interpret their results in the
context of a clear question, and to make those results accessible to their colleagues.
This interpretation step is the most important part of the scientific process. For your
results to be useful, they must be interpretable. We'll say it again: if your results
can't be interpreted, they won't help anybody, not even you.

In this chapter, we present computational tools that help you to make sense of your
results. To this end, the chapter is organized so that it roughly parallels the data-
analysis process. In the first part of this chapter, we introduce a number of programs
that are used to visualize the sort of data arising from bioinformatics research. These
programs range from general-purpose plotting and statistical packages for numerical
data to programs dedicated to presenting sequence and structural information in an
interpretable form. The second part of this chapter covers some tools for data
mining—the process of finding, interpreting, and evaluating patterns in large sets of
data—in the context of some bioinformatics applications.

The topics covered in this chapter are basically subdisciplines of the larger area of
computational statistics. As you have seen in previous chapters, statistical methods
are important because they provide a check on the significance of the researcher's
discoveries. The human nervous system is very good at finding patterns; a little too
good, in fact. If you scrutinize a protein sequence for long enough, you will begin to
see patterns, whether they're biologically significant (like part of a family signature
sequence, such as P.YTVF in chloramphenicol acetyltransferase) or not (words or

353

names, such as PER) amidst the amino acids.[1] Thus, we use visualization to exploit
the abilities of the eye and brain to find patterns that may be interesting. We use
statistics and data mining to keep our intuition in check and to restrict our searches
to those patterns that can be quantitatively and repeatedly shown to be significant.

[1] When you start to see sequence motifs in words or people's names, it's time to take a
break.

14.1 Preparing Your Data
Preparing your data (also known as preprocessing or data cleansing) is the most
important part of data mining. It's also the least glamorous and one of the least-
discussed parts. Preprocessing can be as simple as making sure your data is in the
right format for the program that reads it, or it can involve extensive calculations.

As a bioinformatics researcher, you must be especially careful of your data. Your
results and reputation are based on data that have been provided by other
researchers. Consequently, you must be scrupulous in collecting and using that data.
The following is a list of some general questions about data integrity to answer when
you work on a project (this list isn't exhaustive; you will probably come up with other
things to check that are specific to the project at hand):

· Is your data what you expect it to be? For example, DNA sequences should
only contain As, Ts, Cs, and Gs (unless your program understands the
additional IUPAC symbols). Protein sequences should contain only the 20
amino acids. You can use grep to quickly check if your file contains lines with
bad characters.

· Are your datafiles correctly formatted for the programs you plan to use? Be
wary of more flexible formats. For example, some programs apply a length
limit to the comment line in FASTA files, while other programs don't.

· Be aware of sequence variants. Splice variants, mutations, deletions,
sequencing errors, and inadvertent truncations of the sequence file all can
result in a different sequence than you'd expect. It is up to you to track which
differences in sequences or structures are biologically relevant and which are
artifacts of the experimental process.

· Unless the sequences you are working with have been given to you by a
collaborator who has not yet deposited them in a sequence database, make
sure that you can find each of your sequences in GenBank or another
database.

· When working with large tabular data, make sure that every field in the table
has an appropriate value. Using a program such as XGobi is a good way to
check this, since it complains if not every field has a value. A visualization tool
such as XGobi is also useful if the values are out of register, since the
resulting points will be outliers.

· Does the program produce meaningful results on test data? When you use a
new program, you should have some data for which you know the results, so
you can test the program and make sure it gives the right answer and
behaves in a reasonable fashion (these tests are sometimes called sanity
checks). For example, if a program compares two sequences or structures,
does it give the same result regardless of which order you pass the data to it?

· Check for side effects produced by the programs you use. Does a program
change any of its input? Changes can be as subtle as adding spaces between

354

every 10 residues in a sequence file, normalizing numerical values, or
changing the coordinate values of structural data.

· For microarray data, have the values been normalized? If the programs you
are using perform any kind of normalization, it is important that you
determine how the normalization was achieved.

· For protein structure data, are all the atom numbers and residue numbers
sequential? Is the structure intact, or does it contain chain breaks or other
anomalies? Are all residues labeled with the standard amino acid three-letter
codes, and are all atoms labeled with the appropriate PDB atom codes?

Finally, make sure you understand all the programs being used, at least as far as
knowing the format and meaning of their input and output.

14.2 Viewing Graphics
If you are going to be working with images, you need some basic tools for viewing
graphics files under Linux and Unix. There are many graphics programs available;
the three that we describe next are commonly available, easy to use, and free.

14.2.1 xzgv
xzgv is a program for viewing graphics files under the X Window System. It can
display the more popular graphics formats (GIF, PNG, JPEG), as well as a variety of
others. For a simple graphics viewer, it has some handy features. For example, it
creates thumbnails (small versions of a picture that preview the file) and can step
through images one at a time, as a slideshow.

14.2.2 Ghostview and gv
Ghostview and gv are viewers for PostScript and Portable Document Format (PDF)
files. PostScript and PDF are page-description languages developed at Adobe
Systems, Inc.[2] Both programs allow you to page through a document, jump to
specific pages, print whole documents or selected pages, and perform other simple
document-navigation tasks. More and more journals are distributing their articles
electronically as PDF files, so a document viewer such as gv is very useful for
keeping up with literature.

[2] Adobe makes a PDF reader as well, named Acrobat Reader, which is available at no cost for
Windows, Mac OS, Linux, and a handful of Unix systems.

Because it produces more compact files and cooperates with Windows applications,
PDF seems to be overtaking PostScript as the more common format. Many
documents are still distributed over the Net in PostScript, including preprints
(particularly those written by people who use the LaTEX document formatting
language) and the output of some web-based services (such as the BMERC
secondary structure prediction server).

14.2.3 The GIMP
The GIMP (short for "GNU Image Manipulation Program") is an image processing
package with similar functionality and features to Adobe Photoshop. While the GIMP

355

can open and view graphics files, it is probably overkill to do so. However, when it
comes to reformatting or modifying graphics to use in a presentation or paper,
having image-manipulation software on hand is invaluable.

14.3 Sequence Data Visualization
Tools for viewing sequence data, particularly multiple sequence alignments, were
discussed in Chapter 8. As we mentioned in that chapter, one of the best ways to
rapidly summarize information from a sequence alignment is to use a sequence logo.
In this section, we discuss a geometric approach to visualizing sequence
relationships and introduce TEXshade, a program for creating publication-quality
sequence alignment figures.

14.3.1 Making Publication-Quality Alignmentswith TEXshade
TEXshade (http://homepages.uni-tuebingen.de/beitz/tse.html) is a package for
marking up sequence alignments written using LaTEX, a document markup language
invented for mathematicians and computer scientists. This package is remarkably
flexible, allowing you to color and label aligned residues according to conservation
and chemical characteristics. In addition, TEXshade can incorporate secondary
structure and accessibility information output from the DSSP program (described in
Chapter 6), as well as predictions of secondary structure generated by the PHD
prediction server. Finally, TEXshade can automatically create "fingerprints" that
provide a bird's-eye view of an alignment, in which columns of conserved residues
are represented by vertical lines. Like sequence logos, fingerprints can rapidly
summarize alignment data and find clusters of neighboring conserved residues.

TEXshade is called from within a LaTEX document. If you have a sequence alignment
stored in MSF format (the GCG multiple sequence alignment format) in the file
alignment.msf, the following LaTEX document produces an alignment formatted
according to TEXshade's defaults:
\documentclass{report}
\usepackage{texshade}
\begin{document}

\begin{texshade}{alignment.msf}
\end{texshade}

\end{document}

LaTEX is a document markup language similar to HTML. In the preceding code
example, the output of which is shown in Figure 14-1, you are telling the TEX
interpreter that this document has a beginning and an end, and that it contains only
a TEXshade alignment of the sequences in alignment.msf. You need to mark up the
resulting alignment by hand. If this sounds painful, the SDSC Biology Workbench
provides a graphical interface to TEXshade and can automatically render TEXshade-
formatted sequence alignments as GIF or PostScript images.

Figure 14-1. A TEXshade alignment and its corresponding fingerprint

356

14.3.2 Viewing Sequence Distances Geometrically
Multiple sequence alignments and sequence logos represent similarities at every
position of a group of aligned sequences. However, even with coloring of conserved
residues, it isn't always easy to tell how the sequences are related. Sometimes, it's
useful to look at an even higher level of abstraction to see how the sequences
cluster. Phylogenetic trees represent one way to visualize relatedness.

DGEOM, a set of programs by Mark J. Forster and coworkers, takes a set of aligned
sequences (either a multiple sequence alignment in GCG's MSF format, or a set of
pairwise alignments) and represents them as points in a 3D space, where the
distances between the points represent the evolutionary distances between the
sequences. The points are written to a PDB file and can be viewed with your choice
of protein structure viewers. Some may flinch at the idea of storing a representation
of a sequence alignment in a file format intended to store structural data, but the
program works well, and since high-quality structure visualization packages are easy
to find, this approach avoids the need for a standalone graphics system. The
programs are written in Perl and C, making them fairly easy to modify.

Another implementation of the geometric approach to viewing sequence relationships
is the SeqSpace package developed by Chris Dodge and Chris Sander at the EBI.
This package includes C++ programs for computing the sequence distances, and it
uses Java viewers to render the points in 3D.

357

14.4 Networks and Pathway Visualization
As of this writing, there is no standard package for visualizing interactions between
molecules in a pathway or network. The most common way to represent molecular
interactions schematically is in the form of a graph.[3] Graphs can also be useful for
illustrating other data that represents interactions, including the output of cluster
analyses and interacting residues in protein structures. Biological networks, such as
metabolisms and signaling pathways, tend to be very densely connected, and
creating readable, highly connected graphs isn't an easy task. Fortunately, AT&T
Research distributes GraphViz (http://www.research.att.com/sw/tools/graphviz/), a
freely available suite of programs that allow you to draw and edit graphs. This
package has three features that make it particularly attractive: it runs quickly, it has
excellent documentation, and it uses a flexible and intuitive syntax to describe
graphs.

[3] Here we are talking about the graph theory kind of graph, in which a set of dots (nodes)
are connected by a set of lines (edges). Directed graphs are those in which the edge
connecting two nodes has a direction. Edges in directed graphs are usually represented using
arrows pointing in the direction of a connection. In an undirected graph, the edges have no
direction.

The GraphViz package consists of five programs:

dot

Draws directed graphs

neato

Draws undirected graphs

dotty

A graphical interface for editing graphs

lefty

A language for editing graphs and other diagrams; used to write dotty

tcldot

A graphical interface to dot written in the Tcl language

To draw a directed graph of a small set of interactions, you can type the following
code into a text editor and save it to a file named morphopath.dot:
digraph G {
size="3, 3";

SHH -> "Early gene expression";
"FGF-4" -> "Early gene expression";
SHH -> "BMP-2";
"BMP-2" -> "FGF-4";

358

"FGF-4" -> SHH;
"BMP-2" -> "Late gene expression";
"FGF-4" -> "Late gene expression"; }

The dot program is invoked using the following command at the shell prompt:
% dot -Tps morphopath.dot -o morphopath.ps \end

This command tells the dot program in the GraphViz suite to produce a PostScript
image of the graph described by morphopath.dot and to put the image in the file
morphopath.ps (see Figure 14-2).

Figure 14-2. morphopath pathway output

If you have some experience with the C programming language, you might recognize
the similarity of the graph description format to a struck in C. This structured
approach to describing the graph's layout makes it possible to define graphs within
graphs, and also makes it straightforward to generate GraphViz files from Perl
scripts. In addition to specifying connectivity, graphs produced by the GraphViz
programs can be annotated with labels, different arrow types, and highlighted boxes.

14.5 Working with Numerical Data
Numerical data can always be fed into a spreadsheet program such as Microsoft
Excel or StarOffice Calc and plotted using the program's built-in graphing functions.
Often, this is the best way to make plots quickly. However, you will encounter
situations in which you need more control over the plotting process than the
spreadsheet provides. Two common examples of this kind of situation are in
formatting your plots for publication and in dealing with high-dimensional data sets.
If you do have to create figures from your data, we encourage you to take a look at
Edward Tufte's books on visual explanations (see the Bibliography). They are full of
examples and tips on making clean figures that clearly say what you mean.

In this section, we describe some programs that can create plots. In addition, we
introduce two special-purpose programming languages that include good facilities for
visualization as well as data analysis: the statistics language R (and its commercial
cousin, S-plus) and the numerical programming language Matlab (and its free
counterpart, Octave).

359

14.5.1 gnuplot and xgfe
gnuplot (http://www.gnuplot.org) is one of the more widely used programs for
producing plots of scientific data. Because of its flexibility, longevity, and open
source nature, gnuplot is loaded with features, including scripting and facilities for
including plots in documents. The dark side of this flexibility and longevity, though, is
a fairly intimidating command syntax. Fortunately, a graphical interface to gnuplot
called xg fe exists. xg fe is good for quickly plotting either data or a function, as
shown in Figure 14-3. You can find out more about xg fe at
http://home.flash.net/~dmishee/xgfe/xgfe.html.

Figure 14-3. Output from xg fe/gnuplot

If you need to exert more control over the format of the output, though, it behooves
you to read through the gnuplot documentation and see what it can do. Additionally,
if you need to aumotically generate many plots from data, you may want to figure
out how to control gnuplot 's behavior using Perl or another scripting language.

14.5.2 Grace: The Pocketknife of Data Visualization
Grace (http://plasma-gate.weizmann.ac.il/Grace/)and its predecessor, xmgr, are
alternatives to gnuplot as a fairly powerful tool for plotting 2D data. Grace uses a
simple graphical interface under the X Window System, which allows a fair amount of
menu-driven customization of plots. Like xg fe, Grace provides the fairly simple 20%
functionality you need 80% of the time. In addition to its current main distribution
site at the Weizmann Institute of Science in Israel (which always has the latest
version), there are a number of mirror sites from which Grace can be acquired. The
home site also has a useful FAQ and tutorial introduction to working with Grace.

http://home.flash.net/~dmishee/xgfe/xgfe.html

360

14.5.3 Multidimensional Analysis: XGobi and XGvis
Plotting programs such as Grace and gnuplot work well if your data has two or three
variables that can be assigned to the plot axes. Unfortunately, most interesting data
in biology has a much higher dimensionality. The science of investigating high-
dimensional data is known as multivariate or multidimensional analysis. One
significant problem in dealing with multidimensional data is visualization. For those
who can't envision an 18-dimensional space, there is XGobi
(http://www.research.att.com/areas/stat/xgobi/). XGobi and XGvis are a set of
programs freely available from AT&T Labs. XGobi allows you to view data with many
variables three dimensions at a time as a constellation of points you can rotate using
a mouse. XGvis performs multidimensional scaling, the intelligent squashing of high-
dimensional data into a space you can visualize (usually a 2D plot or a rotatable 3D
plot). Figure 14-4 shows output from XGobi.

Figure 14-4. Screenshot from XGobi

XGobi has a huge number of features; here is a brief explanation to get you started.
XGobi takes as input a text file containing columns of data. If you have a datafile
named xgdemo.dat, it can be viewed in XGobi by typing the following command at
the shell prompt:
% xgobi xgdemo.dat &

XGobi initially presents the points in a 2D scatterplot. Selecting Rotation from the
View menu at the top of the window shows a moving 3D plot of the points that you
can control with the mouse by clicking within the data points and moving the mouse.
Selecting Grand Tour or Correlation Tour from the View menu rotates the points in
an automated tour of the data space.

361

The variable widgets (the circles along the right side of the XGobi interface)
represent each of the variables in the data. The line in each widget represents the
orientation of that variable's axis in the plot. If the data contains more than three
variables, you can select the variables to be represented by clicking first within the
widget of the variable you want to dismiss, and then within the widget of the variable
to be displayed. Finally, clicking on the name of the corresponding variable displays a
menu of transformations for that axis (e.g., natural logarithms, common logs,
squares, and square roots). Like the GraphViz graph drawing programs, XGobi and
XGvis are superbly documented and easy to install on Linux systems if you follow the
instructions on the XGobi home page. Some Linux distributions (such as SuSE) even
include XGobi.

14.5.4 Programming for Data Analysis
In this section, we introduce two new programming languages that are well adapted
for data analysis. The proposition of learning more languages after just learning Perl
may seem a little perverse. Who would want to learn a whole language just to do
data analysis? If your statistics requirements can be satisfied with a spreadsheet and
calculator, these packages may not be for you. Also, as we saw in the last chapter,
there are facilities for creating numerically sophisticated applications using Perl,
particularly the PDL.

However, many problems in bioinformatics require the use of involved numerical or
statistical calculations. The time required to develop and debug such software is
considerable, and it may not be worth your time to work on such code if it's used
only once or twice. Fortunately, in the same way that Perl makes developing data-
handling programs easy, data analysis languages (for lack of a better term) ease the
prototyping and rapid development of data analysis programs. In the next sections,
we introduce R (and its commercial cousin, S-plus), a language for doing statistics;
and Matlab (and its free cousin, Octave), a language for doing numerical
mathematics.

14.5.4.1 R and S-plus

R is a free implementation of the S statistics programming language developed at
AT&T Bell Laboratories. R was developed by Ross Ihaka and Robert Gentleman at the
University of Auckland. Both R and its commercial cousins (S-plus 3.x, 4.x, and
2000) are available for the Unix and Win32 platforms, and both have a syntax that
has been described as "not dissimilar," so we use R to refer to both languages.

R is usually run within an interpreted environment. Instead of writing whole
programs that are executed from the command line, R provides its own interactive
environment in which statements can be run one at a time or as whole programs. To
start the R environment, type in R at the command prompt and hit the Enter key.
You should see something like this:
R : Copyright 2000, The R Development Core Team
Version 1.1.1 (August 15, 2000)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type "?license" or "?licence" for distribution details.

362

R is a collaborative project with many contributors.
Type "?contributors" for a list.

Type "demo()" for some demos, "help()" for on-line help, or
"help.start()" for a HTML browser interface to help.

Type "q()" to quit R.

The angle bracket (>) at the bottom of this screen is the R prompt, similar to the
shell prompt in Unix. In the following examples, we write the R prompt before the
things that the user (that's you) is supposed to type.

Before anything else, you should know two commands. Arguably, the most important
command in any interactive environment is the one that lets you exit back out to the
operating system. In R, the command to quit is:
> q()

The second most useful command is the one that provides access to R's online help
system, help(). The default help() command, with no arguments, returns an
explanation of how to use help(). If you want help on a specific R function, put the
name of the function in the parentheses following help. So, for example, if you want
to learn how the source()function works, you can type:
> help(source)

You can also use ? as shorthand for help(). So, instead of typing help (source) in the
example, you can just enter ?source.

As mentioned earlier, the R environment is interactive. If you type the following:
> 2 + 2

R tells you that two plus two does, in fact, equal four:
> 2 + 2
[1] 4

The R response (4) is preceded by a bracketed number ([1]), which indicates the
position of the answer in the output vector. Unlike Perl, R has no scalar variables.
Instead, single numbers like the previous answer are stored in a vector of length
one. Also, note that the first element in the vector is numbered 1 instead of 0.[4]

[4] Actually, R vectors do have a zero element, but it doesn't accept values assigned to it, and
it returns numeric(0), which is an empty vector.

The <- operator is used as the assignment operator. Its function is similar to the =
operator in Perl. Typing:
> a <- 2 + 2

363

produces no output, since the result of the calculation is stored in the variable on the
left side of the assignment operator. In order to see what value a variable contains,
enter its name at the R prompt:
> a <- 2 + 2
> a
[1] 4

Just as Perl has basic datatypes that are useful for working with text, R has
datatypes that are useful for doing statistics. We have already seen the vector; R
also has matrices, arrays (which are a multidimensional generalization of matrices),
and factors (lists of strings that label vectors of the same length).

14.5.4.2 Online resources for R

The place to go for more information on R is the Comprehensive R Archive Network
(CRAN). You can find the CRAN site nearest to you either by using your favorite
search engine or off a link from the R Project home page (http://www.R-project.org).
CRAN has a number of packages for specific statistical applications implemented in R
and available as RPM files (for information on installing RPMs, see Chapter 3). If your
project requires sampling, clustering, regression, or factor analysis, R can be a
lifesaver. R can even be made to directly access XGobi as an output system, so that
the results of your computations can be plotted in two or more dimensions.

You can try R without having to install it, thanks to Rweb
(http://www.math.montana.edu/Rweb/), a service provided by the Montana State
University Mathematics Department. Rweb accepts your R code, runs it, and returns
a page with the results of the calculation. If you want to use R for anything beyond
simple demonstrations, though, it's faster to download the RPM files and run R on a
local computer.

If you find that R is useful in your work, we vigorously recommend you supplement
the R tutorial, An Introduction to R, and the R FAQ (http://cran.r-project.org/) with
the third edition of Modern Applied Statistics with S-Plus (see the Bibliography). Both
Venables and Ripley are now part of the R development core team, and although
their text is primarily an S-plus book, supplements are available from Ripley's web
site (http://www.stats.ox.ac.uk/~ripley/)that make the examples in book more
easily used under R.

14.5.4.3 Matlab and Octave

GNU Octave (http://www.gnu.org/software/octave/octave.html) is a freely available
programming language whose syntax and functions are similar to Matlab, a
commercial programming environment from The MathWorks, Inc.
(http://www.mathworks.com/products/matlab/). Matlab is popular among engineers
for quickly writing programs that perform large numbers of numerical computations.
Octave (or Matlab) is worth a look if you want to write quick prototypes of number-
crunching programs, particularly for data analysis or simulation. Both Octave and
Matlab are available for Unix and Windows systems. Octave source code, binaries,
and documentation are all available online; they are also distributed as part of an
increasing number of Linux distributions.

364

Octave produces graphical output using the gnuplot package mentioned previously.
While this arrangement works well enough, it is rather spartan compared to the
plotting capabilities of Matlab. In fact, if you are a student, we will take off our open
source hats and strongly encourage you to take advantage of the academic pricing
on Matlab; it will add years to your life. As a further incentive, a number of the data
mining and machine learning tools discussed in the next section are available as
Matlab packages.

14.6 Visualization: Summary
This section has described solutions to data presentation problems that arise
frequently in bioinformatics. For some of the most current work on visualization in
bioinformatics, see the European Bioinformatics Institute's visualization information
off the Projects link on their industrial relations page (http://industry.ebi.ac.uk).
Links to more online visualization and data mining resources are available off the
web page for this book. Table 14-1 shows the tools and techniques that are used for
data visualization.

Table 14-1. Data Visualization Tools and Techniques

What you do Why you do it
What you use to

do it

View graphics files To view results and check
figures xzgv

View PDF or PostScript files To read articles in electronic
form

gv, Adobe
Acrobat Reader

Manipulate graphics files For preparation of figures The GIMP
Plot data in two or three dimensions To summarize data forpresentations Grace, gnuplot

Multidimensionalvisualization To explore data with more
than three variables XGobi

Multidimensional scaling To view high-dimensional data
in2D or 3D XGvis

Plot graphical structures To draw networks and
pathways

GraphViz
programs

Print sequence alignment clearly To format sequence alignment
for publication TEXshade

Statistics-heavy programming for
data analysis

For rapid prototyping of
statistical data-analysis tools R (or S-plus)

Numerically intensive programming
for data analysis

For rapid prototyping of tools
that make heavy use of
matrices

GNU Octave
(or Matlab)

14.7 Data Mining and Biological Information
One of the most exciting areas of modern biology is the application of data mining
methods to biological databases. Many of these methods can equally well fall into the
category of machine learning, the name used in the artificial intelligence community
for the larger family of programs that adapt their behavior with experience. We
present here a summary of some techniques that have appeared in recent work in

365

bioinformatics. The list isn't comprehensive but will hopefully provide a starting point
for learning about this growing area.

A word of caution: anthropomorphisms have a tendency to creep into discussions of
data mining and machine learning, but there is nothing magical about them.
Programs are said to "learn" or be "trained," but they are always just following well-
defined sets of instructions. As with any of the tools we've described in this book,
data mining tools are supplements, rather than substitutes, for human knowledge
and intuition. No program is smart enough to take a pile of raw data and generate
interesting results, much less a publication-quality article ready for submission to the
journal of your choice. As we've stressed before, the creation of a meaningful
question, the experimental design, and the meaningful interpretation of results are
your responsibility and yours alone.

14.7.1 Problems in Data Mining and Machine Learning
The topics addressed by data mining are ones that statisticians and applied
mathematicians have worked on for decades. Consequently, the division between
statistics and data mining is blurry at best. If you do work with data mining or
machine learning techniques, you will want to have more than a passing familiarity
with traditional statistical techniques. If your problem can be solved by the latest
data-mining algorithm or a straightforward statistical calculation, you would do well
to choose the simple calculation. By the same token, please avoid the temptation to
devise your own scoring method without first consulting a statistics book to see if an
appropriate measure already exists. In both cases, it will be easier to debug and
easier to explain your choice of a standard method over a nonstandard one to your
colleagues.

14.7.1.1 Supervised and unsupervised learning

Machine learning methods can be broadly divided into supervised and unsupervised
learning. Learning is said to be supervised when a learning algorithm is given a set
of labeled examples from which to learn (the training set) and is then tested on a set
of unlabeled examples (the test set). Unsupervised learning is performed when data
is available, but the correct labels for each example aren't known. The objective of
running the learning algorithm on the data is to find some patterns or trends that will
aid in understanding the data. For example, the MEME program introduced in
Chapter 8, performs unsupervised learning in order to find sequence motifs in a set
of unaligned sequences. It isn't known ahead of time whether each sequence
contains the pattern, where the pattern is, or what the pattern looks like.

Cluster analysis is another kind of unsupervised learning that has received some
attention in the analysis of microarray data. Clustering, as shown in Figure 14-5, is
the procedure of classifying data such that similar items end up in the same class
while dissimilar items don't, when the actual classes aren't known ahead of time. It
is a standard technique for working with multidimensional data. Figure 14-5 shows
two panels with unadorned dots on the left and dots surrounded by cluster
boundaries on the right.

Figure 14-5. Clustering

366

14.7.2 A Collection of Data Mining Techniques
In this section, we describe some data mining methods commonly reported in the
bioinformatics literature. The purpose of this section is to provide an executive
summary of the complex tricks for data analysis. You aren't expected to be able to
implement these algorithms in your programming language of choice. However, if
you see any of these methods used to analyze data in a paper, you should be able to
recognize the method and, if necessary, evaluate the way in which it was applied.
Like any technique in experimental biology, it is important to have an understanding
of the machine learning methods used in computational biology to know whether or
not they have been used appropriately and correctly.

14.7.2.1 Decision trees

In its simplest form, a decision tree is a list of questions with yes or no answers,
hierarchically arranged, that lead to a decision. For instance, to determine whether a
stretch of DNA is a gene, we might have a tree like the one shown in Figure 14-6.

Figure 14-6. Simple gene decision tree

A tree like this one is easy to work through, since it has a finite number of
possibilities at each branch, and any path through the tree leads to a decision. The
structure of the tree and the rules at each of the branches are determined from the

367

data by a learning algorithm. Techniques for learning decision trees were described
by Leo Breiman and coworkers in the early 1980s, and were later popularized in the
machine learning community by J. R. Quinlan, whose freely available C4.5 decision
tree software and its commercial successor, C5, are standards in the field.

One major advantage of decision trees over other machine learning techniques is
that they produce models that can be interpreted by humans. This is an important
feature, because a human expert can look at a set of rules learned by a decision tree
and determine whether the learned model is plausible given real-world constraints.[5]
In biology, tree classifiers tend to be used in pattern recognition problems, such as
finding gene splice sites or identifying new occurrences of a protein family member.
The MORGAN genefinder developed by Steven Salzberg and coworkers is an example
of a decision tree approach to genefinding.

[5] The canonical decision-tree urban legend comes from an application of trees by a long-
distance telephone company that wanted to learn about churn, the process of losing
customers to other long-distance companies. They discovered that an abnormally large
number of their customers over the age of 70 were subject to churn. A human recognized
something the program did not: humans can die of old age. So, being able to interpret your
results can be useful.

14.7.2.2 Neural networks

Neural networks are statistical models used in pattern recognition and classification.
Originally developed in the 1940s as a mathematical model of memory, neural
networks are sometimes also called connectionist models because of their
representation as nodes (which are usually variables) connected by weighted
functions. Figure 14-7 shows the process by which a neural network is constructed.
Please note, though, that there is nothing particularly "neural" about these models,
nor are there actually physical nodes and connections involved. The idea behind
neural networks is that, by working in concert, these simple processing elements can
perform more complex computations.

Figure 14-7. Neural network diagram

A neural network is composed of a set of nodes that are connected in a defined
topology, where each node has input and output connections to other nodes. In
general, a neural network will receive an input pattern (for example, an amino acid
sequence whose secondary structure is to be predicted), which sets the values of the
nodes on the first layer (the input layer). These values are propagated according to
transfer functions (the connections) to the next layer of nodes, which propagate their
values to the next layer, until the output layer is reached. The pattern of activation
of the output layer is the output of the network. Neural networks are used

368

extensively in bioinformatics problems; examples include the PHD
(http://www.embl-heidelberg.de/predictprotein/predictprotein.html) and PSIPRED
(http://insulin.brunel.ac.uk/psipred/) secondary structure predictors described in
Chapter 9, and the GRAIL genefinder (http://compbio.ornl.gov/grailexp/) mentioned
in Chapter 7.

14.7.2.3 Genetic algorithms

Genetic algorithms are optimization algorithms. They search a large number of
possible solutions for the best one, where "best" is determined by a cost function or
fitness function. Like neural networks, these models were inspired by biological ideas
(in this case, population genetics), but there is nothing inherently biological about
them. In a genetic algorithm, a number of candidate solutions are generated at
random. These candidate solutions are encoded as chromosomes. Parts of each
chromosome are then exchanged à la homologous recombination between real
chromosomes. The resulting recombined strategies are then evaluated according to
the fitness function, and the highest scoring chromosomes are propagated to the
next generation. This recombination and propagation loop continues until a suitably
good solution is found. Genetic algorithms are frequently used in molecular
simulations, such as docking and folding of proteins.

14.7.2.4 Support vector machines

In late 1998, a machine learning tool called the support vector machine (SVM) began
to attract a great deal of attention in bioinformatics. Support vector machines were
developed by Vladimir Vapnik of Bell Laboratories, an early pioneer of machine
learning methods. They have been applied to a wide range of problems, from optical
character recognition to financial time series analysis and recognizing spam (the
email variety, not the lunch meat). SVMs were first applied to biological problems by
Tommi Jaakola (now at MIT), David Haussler, and coworkers at UC Santa Cruz, who
used them for protein sequence classification. They have since been applied to many
of the standard computational biology challenge problems (function prediction,
structure prediction, and genefinding) but have gained the most attention for their
use in microarray analysis.

Support vector machines are supervised classifiers that try to find a linear separation
between different classes of points in a high-dimensional space. In a 2D space, this
separator is a line; in 3D, it's a plane. In general, this separating surface is called a
hyperplane. Support vector machines have two special features. First, instead of just
finding any separating hyperplane, they are guaranteed to find the optimal one, or
the one whose placement yields the largest separation between the two classes. The
data points nearest the frontier between the two classes are called the support
vectors.[6] Second, although SVMs are linear classifiers, they can classify nonlinearly
separable sets of points by transforming the original data points into a higher
dimensional space in which they can be separated by a linear surface.

[6] Vectors, in this case, refer to the coordinates of the data points. For example, on a 2D map,
you might have pairs of (x,y) coordinates representing the location of the data points. These
ordered pairs are the vectors.

Table 14-2 shows some of the most popular data-mining tools and techniques.

369

Table 14-2. Data Mining Tools and Techniques
What you do Why you do it What you use to do it

Clustering
To find similar items when a
classification scheme isn't known
ahead of time

Clustering algorithms, self-
organizing maps

Classification To label each piece of data according
to a classification scheme

Decision trees, neural
networks, SVMs

Regression To extrapolate a trend from a few
examples

Regression algorithms, neural
networks, SVMs, decision
trees

Combining
estimators To improve reliability of prediction Voting methods, mixture

methods

Biblio.1 Unix
Learning Red Hat Linux and Learning Debian GNU Linux. B. McCarty. O'Reilly &
Associates. Good introductory guides to setting up systems with these releases of
Linux.

Learning the Unix Operating System. J. Peek, G. Todino, and J. Strang. O'Reilly &
Associates. A concise introduction to Unix for the beginner.

The Linux Desk Reference. S. Hawkins and J. Brockmeier. Prentice Hall.

Linux in a Nutshell. Siever, et al. O'Reilly & Associates. A no-nonsense quick-
reference guide to Linux commands.

Running Linux. M. Welsh and L. Kaufman. O'Reilly & Associates. A relatively
comprehensive how-to guide for setting up a Linux system.

Unix for the Impatient. P. Abrahams and B. Larson. Addison Wesley. A detailed yet
user-friendly presentation of everything a Unix user needs to know. (My first and still
favorite Unix guide. CJG)

Unix in a Nutshell. A. Robbins. O'Reilly & Associates. A no-nonsense quick-reference
guide to Unix commands.

Biblio.2 SysAdmin
Essential System Administration. A. Frisch. O'Reilly & Associates. A detailed guide to
administration of Unix systems.

Using csh & tcsh. P. DuBois. O'Reilly & Associates. A detailed guide to using two of
the most common shell environments.

Biblio.3 Perl

370

Elements of Programming in Perl. A. L. Johnson. Manning Publications. Good
introduction to Perl as a first programming language

Learning Perl. R. Schwartz and T. Christiansen. O'Reilly & Associates. Introduction to
Perl but assumes prior experience with another programming language.

For a more detailed, biology-oriented Perl tutorial, we recommend the one available
online at Lincoln Stein's laboratory page at Cold Spring Harbor Labs,
http://stein.cshl.org.

Mastering Algorithms in Perl. J. Orwant, J. Hietaniemi, and J. Macdonald. O'Reilly &
Associates. Both this book and the next cover interesting things that can be done
with Perl.

Perl Cookbook. T. Christiansen and N. Torkington. O'Reilly & Associates.

Programming Perl. L. Wall, T. Christiansen, and J. Orwant. O'Reilly & Associates. The
bible of Perl.

Biblio.4 General Reference
Finding Out About: Search Engine Technology from a Cognitive Perspective. R.
Belew. Cambridge University Press. A fascinating discussion of information retrieval
and the process of web-based research from a cognitive science perspective. Both
practical and philosophical aspects are covered.

All three of the following books cover general programming techniques:

Code Complete. S. McConnell. Microsoft Press.

The Practice of Programming. B. W. Kernighan and R. Pike. Addison Wesley

Programming Pearls. J. Bentley. Addison Wesley

Biblio.5 Bioinformatics Reference
Bioinformatics: A Machine Learning Approach. P. Baldi and S. Brunak. MIT Press. The
authors have firsthand experience with applying neural networks and hidden Markov
models to sequence analysis, including genefinding, DNA feature detection, and
protein family modeling.

Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. A. D.
Baxevanis and B. F. F. Ouellette. John Wiley & Sons. A gentle introduction to
biological information and bioinformatics tools on the Web, focused on NCBI tools.

Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. R.
Durbin, S. Eddy, A. Krogh, and G. Mitchison. Cambridge University Press. A rigorous
presentation of the statistical and algorithmic basis of sequence analysis methods,
including pairwise and multiple sequence analysis, motif discovery, and phylogenetic
analysis.

http://stein.cshl.org

371

Molecular Systematics. D. M. Hillis, C. Moritz, and B. K. Mable, Eds. Sinauer and
Associates. Although the first two-thirds of the book are devoted to experimental
methods, the chapters on the methods for inferring and applying phylogenies provide
a rigorous and comprehensive follow-up to the Graur and Li book.

Biblio.6 Molecular Biology/Biology Reference
Fundamentals of Molecular Evolution. D. Graur, W-H. Li. Sinauer and Associates. A
readable explanation of the mechanisms by which genomes change over time, with a
discussion of phylogenetic inference based on molecular data.

Molecular Systematics. D. M. Hillis, C. Moritz, and B. K. Mable, eds. Sinauer and
Associates. Although the first two-thirds of the book are devoted to experimental
methods, the chapters on the methods for inferring and applying phylogenies provide
a rigorous and comprehensive follow-up to the Graur and Li book.

Biblio.7 Protein Structure and Biophysics
Intermolecular and Surface Forces. J. Israelachvili. Academic Press. A must-have
book for any serious student of macromolecular structure and molecular biophysics.
This book details the physical chemistry of interactions among molecules and
between molecules and surfaces.

Introduction to Protein Structure. C-I. Branden and J. Tooze. Garland Publishing. An
illustrated guide to the basic principles of protein structure and modeling.

Biblio.8 Genomics
Genomes. T. A. Brown. Wiley-Liss. A thorough presentation of molecular genetics
from the genomics perspective.

Genomics: The Science and Technology Behind the Human Genome Project. C. R.
Cantor and C. L. Smith. John Wiley & Sons. If you want to understand, in detail, how
genomic sequence data is obtained, this is the book to have. It exhaustively details
experimental protocols for sequencing and mapping and explores the future of
sequencing technology.

Biblio.9 Biotechnology
DNA Microarrays: A Practical Approach. M. Schena, ed. Oxford University Press. An
introduction to the basics of DNA microarray technology and its applications.

Proteome Research: New Frontiers in Functional Genomics. M. R. Wilkins, K. L.
Williams, R. D. Appel, and D. F. Hochstrasser, eds. Springer. An introduction to new
techniques for protein identification and analysis, from 2D-PAGE to MALDI-TOF and
beyond.

Biblio.10 Databases

372

CGI Programming with Perl. S. Guelich, S. Gundavaram, and G. Birznieks. O'Reilly &
Associates. An introduction to the CGI protocol for generating active-content web
pages. If you are interested in web software development, this book is an essential
starting point.

Joe Celko's Data and Databases: Concepts in Practice. J. Celko. Morgan Kaufman. A
good introduction to relational database concepts and the use of SQL.

MySQL. P. DuBois. New Riders. A detailed guide to using MySQL. Detailed coverage
of administration and security issues.

MySQL & mSQL. R. J. Yarger, G. Reese, and T. King. O'Reilly & Associates. An
introduction to using MySQL and mSQL; also contains an introduction to RDB
concepts and database normalization. O'Reilly also publishes a collection of reference
books about Oracle, if you prefer to start using Oracle from the beginning.

Biblio.11 Visualization
Understanding Robust and Exploratory Data Analysis. D. C. Hoaglin, et al. eds. John
Wiley & Sons. A classic book on visualization techniques. Don't be put off by the fact
that the focus of the book is on techniques for doing analysis by hand rather than the
latest computational tricks: the methods described are implemented in many
visualization packages and are easily applicable to the latest bioinformatics
problems.

The Visual Display of Quantitative Information, Envisioning Information, and Visual
Explanations. E Tufte. Graphics Press. In each book, Tufte illustrates good and bad
practices in visual data analysis using examples from newspapers, advertising
campaigns, and train schedules (to name a few).

The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics. W.
Schroeder, K. Martin, and B. Lorensen. Prentice Hall Computer Books. For those
readers who want a more active role in designing visualization tools, this book
combines introductions to computer graphics and visualization practices with a
description of a working implementation of a complete visualization system, the
Visualization Toolkit (VTK). VTK is an object-oriented, scriptable framework for
building visualization tools. It is available from http://www.kitware.com.

Biblio.12 Data Mining
Data Mining: Practical Machine Learning. I. Witten and E. Frank. Morgan Kaufman. A
clearly written introduction to data mining methods. It comes with documentation for
the authors' WEKA program suite, a set of data mining tools written in Java that can
be freely downloaded from their web site.

Data Preparation for Data Mining. D. Pyle. Morgan Kaufman. For readers looking for
more insight into the data-preparation process.

Machine Learning. T. Mitchell. McGraw-Hill. Provides a complementary treatment of
the same methods as the previous book and is more formal but no less practical.

http://www.kitware.com

373

Modern Applied Statistics with S-Plus. Brian D. Ripley and William N. Venables.
Springer Verlag.

Numerical Recipes in C. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Cambridge University Press. A comprehensive introduction to the
techniques that underlie all nontrivial methods for data analysis. Combines
mathematical explanations with efficient C implementations. In addition to the
hardcopy form, the entire book and all its source code are available online at no
charge from http://www.nr.com.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Developing Bioinformatics Computer Skills is
Caenorhabditis elegans, a small nematode worm. Unlike many of its nastier parasitic
cousins, C. elegans lives in the soil where it feeds on microbes and bacteria. It grows
to about 1 mm in length.

In spite of its status as a "primitive" organism, C. elegans shares with H. sapiens
many essential biological characteristics. C. elegans begins life as a single cell that
divides and grows to form a multicellular adult. It has a nervous system and a brain
(more properly known as the circumpharyngeal ring) and a muscular system that
supports locomotion. It exhibits behavior and is capable of rudimentary learning.
Like humans, it comes in two sexes, but in C. elegans those sexes consist of a male
and a self-fertilizing hermaphrodite. C. elegans is easily grown in large numbers in
the laboratory, has a short (2-3 week) lifespan, and can be manipulated in
sophisticated experiments. These characteristics make it an ideal organism for
scientific research.

The C. elegans hermaphrodite has 959 cells, 300 of which are neurons, and 81 of
which are muscle cells. The entire cell lineage has been traced through development.
The adult has a number of sensory organs in the head region which respond to taste,
smell, touch, and temperature. Although it has no eyes, it does react slightly to light.
C. elegans has approximately 17,800 distinct genes, and its genome has been
completely sequenced. Along with the fruit fly, the mouse, and the weed Arabidopsis,
C. elegans has become one of the most studied model organisms in biology since
Sydney Brenner first focused his attention on it decades ago.

Mary Anne Weeks Mayo was the production editor and copyeditor for Developing
Bioinformatics Computer Skills. Rachel Wheeler proofread the book. Linley Dolby and
Sheryl Avruch provided quality control. Gabe Weiss, Edie Shapiro, Matt Hutchinson,
and Sada Preisch provided production assistance. Joe Wizda wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is an original illustration created by Lorrie LeJeune,
based on a photograph supplied by Leon Avery at the University of Texas
Southwestern Medical Center. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

http://www.nr.com

374

Melanie Wang designed the interior layout based on a series design by Nancy Priest.
Cliff Dyer converted the files from MSWord to FrameMaker 5.5 using tools created by
Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond
Book; the code font is Constant Willison. The illustrations for this book were created
by Robert Romano and Lucy Muellner using Macromedia Freehand 9 and Adobe
Photoshop 6. This colophon was written by Lorrie LeJeune.

